集成学习技术揭示了小儿精神分裂症的多维脑电图特征改变。
Ensemble learning techniques reveals multidimensional EEG feature alterations in pediatric schizophrenia.
作者信息
Mao Ying, Wang Fang, Wang Shan, Wang Zhaowei, Li Gang, Qi Xuchen, Sun Yu
机构信息
Department of Special Examination, Shaoxing People's Hospital, Shaoxing, China.
School of Medicine, Shaoxing University, Shaoxing, China.
出版信息
Front Hum Neurosci. 2025 Aug 7;19:1530291. doi: 10.3389/fnhum.2025.1530291. eCollection 2025.
Schizophrenia (SCZ) is a severe mental disorder that impairs brain function and daily life, while its early and objective diagnosis remains a major clinical challenge due to the reliance on subjective assessments. This study aims to develop a machine learning-based framework for the auxiliary diagnosis of SCZ using multi-dimensional electroencephalogram (EEG) features and to investigate the underlying neural alterations. Resting-state EEG data were obtained from 45 male patients with pediatric SCZ and 39 age-and gender-matched healthy controls. Three types of EEG features (relative power (RP), fuzzy entropy (FuzEn), and functional connectivity (FC)) were extracted under various time window lengths and fed into four ensemble learning models. A data-driven feature selection approach (Recursive Feature Elimination) was applied to identify the most informative features, resulting in 212 most discriminative features (48 RP, 40 FuzEn, and 124 FC) out of the initial 760. Leveraging the selected features, the Categorical Boosting model achieved the highest classification accuracy of 99.60% at the 4-s window. Further analysis of the discriminative features revealed that the altered EEG characteristics were mainly in the alpha, beta, and gamma bands. Particularly, altered FCs exhibited a fronto-increase-parieto-decrease pattern mainly in the right hemisphere along with spectral-dependent RP alterations and a universally reduced FuzEn in the pediatric SCZ group. In summary, this study not only showcases the potential of advanced ensemble learning algorithms in precisely identifying pediatric SCZ, but also provides new insights into the altered brain functions in pediatric SCZ patients, which may benefit the future development of automatic diagnosis systems.
精神分裂症(SCZ)是一种严重的精神障碍,会损害大脑功能和日常生活,而由于依赖主观评估,其早期客观诊断仍然是一项重大的临床挑战。本研究旨在开发一种基于机器学习的框架,利用多维脑电图(EEG)特征辅助诊断SCZ,并研究潜在的神经改变。从45名男性小儿SCZ患者和39名年龄及性别匹配的健康对照者中获取静息态EEG数据。在不同的时间窗长度下提取了三种类型的EEG特征(相对功率(RP)、模糊熵(FuzEn)和功能连接(FC)),并将其输入到四个集成学习模型中。应用一种数据驱动的特征选择方法(递归特征消除)来识别最具信息性的特征,从最初的760个特征中得到了212个最具区分性的特征(48个RP、40个FuzEn和124个FC)。利用所选特征,分类提升模型在4秒窗口时达到了99.60%的最高分类准确率。对区分性特征的进一步分析表明,EEG特征的改变主要在α、β和γ频段。特别是,FC的改变在小儿SCZ组中呈现出主要在右半球的额部增加-顶叶减少模式,同时伴有频谱依赖性的RP改变和普遍降低的FuzEn。总之,本研究不仅展示了先进的集成学习算法在精确识别小儿SCZ方面的潜力,还为小儿SCZ患者大脑功能的改变提供了新的见解,这可能有利于自动诊断系统的未来发展。
相似文献
Front Hum Neurosci. 2025-8-7
Front Hum Neurosci. 2025-7-16
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2024-10-17
本文引用的文献
Front Hum Neurosci. 2024-2-14
J Clin Med. 2023-6-29
IEEE Trans Neural Syst Rehabil Eng. 2023