Suppr超能文献

基于 EEG 信号的动态功能连接分析和 3D 卷积神经网络的精神分裂症自动识别。

Automatic identification of schizophrenia based on EEG signals using dynamic functional connectivity analysis and 3D convolutional neural network.

机构信息

School of Engineering, University of Southern Queensland, Toowoomba, Australia.

School of Engineering, University of Southern Queensland, Toowoomba, Australia.

出版信息

Comput Biol Med. 2023 Jun;160:107022. doi: 10.1016/j.compbiomed.2023.107022. Epub 2023 May 10.

Abstract

Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dynamic functional connectivity analysis and deep learning methods. A time-frequency domain functional connectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band (8-12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were achieved in this study. In addition, we also found not only the default mode network region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side have significant difference between the ScZ and HC subjects.

摘要

精神分裂症(ScZ)是一种严重影响人类大脑的精神疾病,对情感倾向、个人和社会生活质量以及医疗保健系统造成严重影响。近年来,深度学习方法仅在最近才开始关注功能磁共振成像(fMRI)数据中的连接分析。为了将这种研究扩展到脑电图(EEG)信号,本文探讨了使用动态功能连接分析和深度学习方法识别 ScZ 脑电图信号。提出了一种时频域功能连接分析方法,通过交叉互信息算法提取每个受试者的 alpha 波段(8-12 Hz)的特征。应用 3D 卷积神经网络技术对 ScZ 受试者和健康对照组(HC)进行分类。该研究采用 LMSU 公开的 ScZ EEG 数据集进行评估,准确率为 97.74±1.15%,灵敏度为 96.91±2.76%,特异性为 98.53±1.97%。此外,我们还发现,不仅默认模式网络区域,而且左右颞叶和颞后叶之间的连接在 ScZ 和 HC 受试者之间也存在显著差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验