Sunusi Nurtiti, Sikib Ankaz As, Pasari Sumanta
Stochastic Modeling Research Group, Department of Statistics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia.
Department of Mathematics, Birla Institute of Technology and Science, Pilani, India.
MethodsX. 2025 Feb 5;14:103202. doi: 10.1016/j.mex.2025.103202. eCollection 2025 Jun.
Air pollution poses a significant challenge to public health and the global environment. The Industrial Revolution, advancing technology and society, led to elevated air pollution levels, contributing to acid rain, smog, ozone depletion, and global warming. Poor air quality increases risks of respiratory inflammation, tuberculosis, asthma, chronic obstructive pulmonary disease (COPD), pneumoconiosis, and lung cancer. In this context, developing reliable air pollution forecasting models is imperative for guiding effective mitigation strategies and policy interventions. This study presents a daily air pollution prediction model focusing on Jakarta's sulfur dioxide (SO₂) and carbon monoxide (CO) levels, leveraging a hybrid methodology that integrates Clustering Large Applications (CLARA) with the Fuzzy Time Series Markov Chain (FTSMC) approach. The analysis revealed five distinct clusters, with medoid selection refined iteratively to ensure stabilization. A 5 × 5 Markov transition probability matrix was subsequently constructed for modeling the data. Predicted values for SO₂ and CO in Jakarta using the CLARA-FTSMC hybrid method showed strong alignment with the actual data. Forecasting accuracy results for SO₂ and CO in Jakarta, based on Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), showed excellent performance, underscoring the efficacy of the CLARA-FTSMC hybrid approach in predicting air pollution levels.•The CLARA-FTSMC hybrid method demonstrates high effectiveness in analyzing large datasets, addressing the limitations of previous hybrid clustering fuzzy time series methods.•The number of fuzzy time series partitions is optimally determined based on clustering results obtained through the gap statistic approach, ensuring robust partitioning.•The forecasting accuracy of the CLARA-FTSMC hybrid method, evaluated using MAE and RMSE, showed excellent performance in predicting daily air pollution levels of SO₂ and CO in Jakarta.
空气污染对公众健康和全球环境构成了重大挑战。工业革命推动了技术和社会的发展,但也导致了空气污染水平的上升,引发了酸雨、雾霾、臭氧消耗和全球变暖等问题。空气质量差会增加呼吸道炎症、肺结核、哮喘、慢性阻塞性肺疾病(COPD)、尘肺病和肺癌的风险。在此背景下,开发可靠的空气污染预测模型对于指导有效的缓解策略和政策干预至关重要。本研究提出了一种针对雅加达二氧化硫(SO₂)和一氧化碳(CO)水平的每日空气污染预测模型,采用了一种将聚类大型应用(CLARA)与模糊时间序列马尔可夫链(FTSMC)方法相结合的混合方法。分析揭示了五个不同的聚类,并通过迭代优化质心选择以确保稳定性。随后构建了一个5×5的马尔可夫转移概率矩阵来对数据进行建模。使用CLARA-FTSMC混合方法预测的雅加达SO₂和CO值与实际数据高度吻合。基于平均绝对误差(MAE)和均方根误差(RMSE)的雅加达SO₂和CO预测准确性结果显示出优异的性能,突出了CLARA-FTSMC混合方法在预测空气污染水平方面的有效性。
•CLARA-FTSMC混合方法在分析大型数据集方面显示出高效性,克服了以往混合聚类模糊时间序列方法的局限性。
•基于通过间隙统计方法获得的聚类结果,最优地确定了模糊时间序列分区的数量,确保了稳健的分区。
•使用MAE和RMSE评估的CLARA-FTSMC混合方法的预测准确性在预测雅加达SO₂和CO的每日空气污染水平方面表现出色。