Suppr超能文献

个体层面的干预措施以减少个人接触室外空气污染及其对长期呼吸系统疾病患者的影响。

Individual-level interventions to reduce personal exposure to outdoor air pollution and their effects on people with long-term respiratory conditions.

机构信息

Cochrane Airways, Population Health Research Institute, St George's, University of London, London, UK.

European Lung Foundation, Sheffield, UK.

出版信息

Cochrane Database Syst Rev. 2021 Aug 9;8(8):CD013441. doi: 10.1002/14651858.CD013441.pub2.

Abstract

BACKGROUND

More than 90% of the global population lives in areas exceeding World Health Organization air quality limits. More than four million people each year are thought to die early due to air pollution, and poor air quality is thought to reduce an average European's life expectancy by one year. Individuals may be able to reduce health risks through interventions such as masks, behavioural changes and use of air quality alerts. To date, evidence is lacking about the efficacy and safety of such interventions for the general population and people with long-term respiratory conditions. This topic, and the review question relating to supporting evidence to avoid or lessen the effects of air pollution, emerged directly from a group of people with chronic obstructive pulmonary disease (COPD) in South London, UK.

OBJECTIVES

  1. To assess the efficacy, safety and acceptability of individual-level interventions that aim to help people with or without chronic respiratory conditions to reduce their exposure to outdoor air pollution. 2. To assess the efficacy, safety and acceptability of individual-level interventions that aim to help people with chronic respiratory conditions reduce the personal impact of outdoor air pollution and improve health outcomes.

SEARCH METHODS

We identified studies from the Cochrane Airways Trials Register, Cochrane Central Register of Controlled Trials, and other major databases. We did not restrict our searches by date, language or publication type and included a search of the grey literature (e.g. unpublished information). We conducted the most recent search on 16 October 2020.

SELECTION CRITERIA

We included randomised controlled trials (RCTs) and non-randomised studies (NRS) that included a comparison treatment arm, in adults and children that investigated the effectiveness of an individual-level intervention to reduce risks of outdoor air pollution. We included studies in healthy individuals and those in people with long-term respiratory conditions. We excluded studies which focused on non-respiratory long-term conditions, such as cardiovascular disease. We did not restrict eligibility of studies based on outcomes.

DATA COLLECTION AND ANALYSIS

We used standard Cochrane methods. Two review authors independently selected trials for inclusion, extracted study characteristics and outcome data, and assessed risk of bias using the Cochrane Risk of Bias tool for RCTs and the Risk Of Bias In Non-randomised Studies - of Interventions (ROBINS-I) as appropriate. One review author entered data into the review; this was spot-checked by a second author. We planned to meta-analyse results from RCTs and NRS separately, using a random-effects model. This was not possible, so we presented evidence narratively. We assessed certainty of the evidence using the GRADE approach. Primary outcomes were: measures of air pollution exposure; exacerbation of respiratory conditions; hospital admissions; quality of life; and serious adverse events.

MAIN RESULTS

We identified 11 studies (3372 participants) meeting our inclusion criteria (10 RCTs and one NRS). Participants' ages ranged from 18 to 74 years, and the duration of studies ranged from 24 hours to 104 weeks. Six cross-over studies recruited healthy adults and five parallel studies included either people with pre-existing conditions (three studies) or only pregnant women (two studies). Interventions included masks (e.g. an N95 mask designed to filter out airborne particles) (five studies), an alternative cycle route (one study), air quality alerts and education (five studies). Studies were set in Australia, China, Iran, the UK, and the USA. Due to the diversity of study designs, populations, interventions and outcomes, we did not perform any meta-analyses and instead summarised results narratively. We judged both RCTs and the NRS to be at risk of bias from lack of blinding and lack of clarity regarding selection methods. Many studies did not provide a prepublished protocol or trial registration. From five studies (184 participants), we found that masks or altered cycle routes may have little or no impact on physiological markers of air pollution exposure (e.g. blood pressure and heart rate variability), but we are very uncertain about this estimate using the GRADE approach. We found conflicting evidence regarding health care usage from three studies of air pollution alerts, with one non-randomised cross-over trial (35 participants) reporting an increase in emergency hospital attendances and admissions, but the other two randomised parallel trials (1553 participants) reporting little to no difference. We also gave the evidence for this outcome a very uncertain GRADE rating. None of our included trials reported respiratory exacerbations, quality of life or serious adverse events. Secondary outcomes were not well reported, but indicated inconsistent impacts of air quality alerts and education interventions on adherence, with some trials reporting improvements in the intervention groups and others reporting little or no difference. Symptoms were reported by three trials, with one randomised cross-over trial (15 participants) reporting a small increase in breathing difficulties associated with the mask intervention, one non-randomised cross-over trial (35 participants) reporting reduced throat and nasal irritation in the lower-pollution cycle route group (but no clear difference in other respiratory symptoms), and another randomised parallel trial (519 participants) reporting no clear difference in symptoms between those who received a smog warning and those who did not.

AUTHORS' CONCLUSIONS: The lack of evidence and study diversity has limited the conclusions of this review. Using a mask or a lower-pollution cycle route may mitigate some of the physiological impacts from air pollution, but evidence was very uncertain. We found conflicting results for other outcomes, including health care usage, symptoms and adherence/behaviour change. We did not find evidence for adverse events. Funders should consider commissioning larger, longer studies, using high-quality and well-described methods, recruiting participants with pre-existing respiratory conditions. Studies should report outcomes of importance to people with respiratory conditions, such as exacerbations, hospital admissions, quality of life and adverse events.

摘要

背景

超过 90%的全球人口生活在世界卫生组织空气质量限量标准以上的地区。每年有超过 400 万人因空气污染而过早死亡,空气污染被认为会使欧洲人的平均预期寿命减少一年。个人可能会通过口罩、行为改变和使用空气质量警报等干预措施来降低健康风险。迄今为止,对于普通人群和患有长期呼吸系统疾病的人群来说,这些干预措施的效果和安全性的证据尚缺乏。本课题以及与其相关的审查问题,即避免或减轻空气污染影响的支持证据,直接来自英国伦敦南部的一群慢性阻塞性肺疾病(COPD)患者。

目的

  1. 评估旨在帮助有或没有慢性呼吸疾病的个人减少接触室外空气污染的个体干预措施的效果、安全性和可接受性。2. 评估旨在帮助患有慢性呼吸疾病的个人减轻个人对室外空气污染的影响并改善健康结果的个体干预措施的效果、安全性和可接受性。

检索方法

我们从 Cochrane Airways 试验注册库、Cochrane 对照试验中心注册库和其他主要数据库中确定了研究。我们没有按日期、语言或出版类型限制我们的搜索,并且包括对灰色文献(例如未发表的信息)的搜索。我们于 2020 年 10 月 16 日进行了最近的一次搜索。

选择标准

我们纳入了随机对照试验(RCT)和非随机研究(NRS),这些研究包括比较治疗组,在成年人和儿童中调查减少室外空气污染风险的个体干预措施的有效性。我们纳入了健康个体和患有长期呼吸系统疾病的个体的研究。我们排除了专注于非呼吸系统长期疾病(如心血管疾病)的研究。我们没有根据结果限制研究的资格。

数据收集和分析

我们使用了标准的 Cochrane 方法。两名综述作者独立选择试验纳入、提取研究特征和结局数据,并使用 Cochrane 偏倚风险工具(针对 RCT)和非随机干预的偏倚风险(ROBINS-I)(适用于 NRS)评估偏倚风险。一名综述作者将数据录入综述,另一名作者对此进行了抽查。我们计划使用随机效应模型对 RCT 和 NRS 的结果进行荟萃分析,但由于无法进行荟萃分析,我们只能进行叙述性总结。我们使用 GRADE 方法评估证据的确定性。主要结局为:空气污染暴露测量值;呼吸疾病恶化;住院;生活质量;严重不良事件。

主要结果

我们确定了 11 项符合纳入标准的研究(3372 名参与者)(10 项 RCT 和 1 项 NRS)。参与者的年龄从 18 岁到 74 岁不等,研究的持续时间从 24 小时到 104 周不等。六项交叉研究招募了健康成年人,五项平行研究包括有或没有预先存在的条件的人(三项研究)或仅孕妇(两项研究)。干预措施包括口罩(例如设计用于过滤空气中颗粒的 N95 口罩)(五项研究)、替代自行车路线(一项研究)、空气质量警报和教育(五项研究)。研究地点在澳大利亚、中国、伊朗、英国和美国。由于研究设计、人群、干预措施和结局的多样性,我们没有进行任何荟萃分析,而是进行了叙述性总结。我们认为两项 RCT 和 NRS 都存在偏倚风险,因为它们缺乏盲法和选择方法的明确性。许多研究没有提供预先制定的方案或试验注册。我们从五项研究(184 名参与者)中发现,口罩或改变自行车路线可能对空气污染暴露的生理标志物(如血压和心率变异性)几乎没有或没有影响,但我们使用 GRADE 方法对这一估计的确定性非常不确定。我们对空气质量警报的健康保健使用的证据存在相互矛盾的结果,三项研究中有一项非随机交叉试验(35 名参与者)报告称急诊就诊和入院人数增加,但另外两项随机平行试验(1553 名参与者)报告称几乎没有差异。我们还对这一结局的证据给予了非常不确定的 GRADE 评级。我们纳入的试验均未报告呼吸恶化、生活质量或严重不良事件。次要结局报告得不够充分,但表明空气质量警报和教育干预措施对依从性的影响不一致,一些试验报告干预组的依从性有所改善,而其他试验报告差异不大或没有差异。三项试验报告了症状,其中一项随机交叉试验(15 名参与者)报告称佩戴口罩的干预措施会增加呼吸困难,一项非随机交叉试验(35 名参与者)报告称在污染程度较低的自行车路线组中喉咙和鼻腔刺激减少(但其他呼吸道症状没有明显差异),另一项随机平行试验(519 名参与者)报告称接受烟雾警报的人和没有接受烟雾警报的人之间症状没有明显差异。

作者结论

缺乏证据和研究多样性限制了本综述的结论。使用口罩或污染程度较低的自行车路线可能会减轻一些空气污染对身体的影响,但证据非常不确定。我们对其他结果(包括保健使用、症状和依从性/行为改变)的结果存在相互矛盾的结果。我们没有发现不良事件的证据。资助者应考虑委托更大、更长时间的研究,使用高质量和描述良好的方法,招募患有呼吸系统疾病的参与者。研究应报告对患有呼吸系统疾病的人重要的结局,如恶化、住院、生活质量和不良事件。

相似文献

2
Interventions to improve adherence to pharmacological therapy for chronic obstructive pulmonary disease (COPD).
Cochrane Database Syst Rev. 2021 Sep 8;9(9):CD013381. doi: 10.1002/14651858.CD013381.pub2.
3
Telehealth interventions: remote monitoring and consultations for people with chronic obstructive pulmonary disease (COPD).
Cochrane Database Syst Rev. 2021 Jul 20;7(7):CD013196. doi: 10.1002/14651858.CD013196.pub2.
4
Exercise versus airway clearance techniques for people with cystic fibrosis.
Cochrane Database Syst Rev. 2022 Jun 22;6(6):CD013285. doi: 10.1002/14651858.CD013285.pub2.
5
Physical activity for treatment of irritable bowel syndrome.
Cochrane Database Syst Rev. 2022 Jun 29;6(6):CD011497. doi: 10.1002/14651858.CD011497.pub2.
6
Interventions for infantile haemangiomas of the skin.
Cochrane Database Syst Rev. 2018 Apr 18;4(4):CD006545. doi: 10.1002/14651858.CD006545.pub3.
7
Antibiotics for exacerbations of asthma.
Cochrane Database Syst Rev. 2018 Jun 25;6(6):CD002741. doi: 10.1002/14651858.CD002741.pub2.
8
Personally tailored activities for improving psychosocial outcomes for people with dementia in long-term care.
Cochrane Database Syst Rev. 2018 Feb 13;2(2):CD009812. doi: 10.1002/14651858.CD009812.pub2.
9
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
10
Aural toilet (ear cleaning) for chronic suppurative otitis media.
Cochrane Database Syst Rev. 2025 Jun 9;6(6):CD013057. doi: 10.1002/14651858.CD013057.pub3.

引用本文的文献

2
Air pollution and cardiovascular diseases: mechanisms, evidence, and mitigation strategies.
J Med Life. 2025 May;18(5):411-427. doi: 10.25122/jml-2025-0018.
3
Physical Activity, Air Pollution, and Mortality: A Systematic Review and Meta-analysis.
Sports Med Open. 2025 Apr 7;11(1):35. doi: 10.1186/s40798-025-00830-z.
4
Interventions to reduce the impact of outdoor air pollution on asthma: A systematic review.
Afr J Thorac Crit Care Med. 2024 Oct 14;30(3):e1992. doi: 10.7196/AJTCCM.2024.v30i3.1992. eCollection 2024.
6
Piloting co-developed behaviour change interventions to reduce exposure to air pollution and improve self-reported asthma-related health.
J Expo Sci Environ Epidemiol. 2025 Apr;35(2):242-253. doi: 10.1038/s41370-024-00661-2. Epub 2024 Apr 12.
7
A scoping review of wildfire smoke risk communications: issues, gaps, and recommendations.
BMC Public Health. 2024 Jan 27;24(1):312. doi: 10.1186/s12889-024-17681-0.
8
The impact of wearing facemask on COPD patients: A protocol of a systematic review and meta-analysis.
PLoS One. 2023 Sep 28;18(9):e0292388. doi: 10.1371/journal.pone.0292388. eCollection 2023.
9
Ambient air pollution and infant health: a narrative review.
EBioMedicine. 2023 Jul;93:104609. doi: 10.1016/j.ebiom.2023.104609. Epub 2023 May 9.

本文引用的文献

1
Short-term exposure to sulphur dioxide (SO) and all-cause and respiratory mortality: A systematic review and meta-analysis.
Environ Int. 2021 May;150:106434. doi: 10.1016/j.envint.2021.106434. Epub 2021 Feb 15.
4
Long-term exposure to NO and O and all-cause and respiratory mortality: A systematic review and meta-analysis.
Environ Int. 2020 Nov;144:105998. doi: 10.1016/j.envint.2020.105998. Epub 2020 Oct 5.
5
The effect direction plot revisited: Application of the 2019 Cochrane Handbook guidance on alternative synthesis methods.
Res Synth Methods. 2021 Jan;12(1):29-33. doi: 10.1002/jrsm.1458. Epub 2020 Oct 5.
6
Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis.
Environ Int. 2020 Oct;143:105974. doi: 10.1016/j.envint.2020.105974. Epub 2020 Jul 20.
7
Short-term exposure to carbon monoxide and myocardial infarction: A systematic review and meta-analysis.
Environ Int. 2020 Oct;143:105901. doi: 10.1016/j.envint.2020.105901. Epub 2020 Jul 4.
10
Outdoor air pollution and the burden of childhood asthma across Europe.
Eur Respir J. 2019 Oct 31;54(4). doi: 10.1183/13993003.02194-2018. Print 2019 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验