Suppr超能文献

心率变异性在预测慢性心力衰竭患者院外重大心血管不良事件中的价值

Heart Rate Variability's Value in Predicting Out-of-Hospital Major Adverse Cardiovascular Events in Patients With Chronic Heart Failure.

作者信息

Men Li, Chen Bingxin, Yang Long, Shi Jiangrong, Tang Shuqin, Jiang Xing, Chen Yunhua, Wang Xiao, Fan Ping

机构信息

Department of Heart Function, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.

Department of Pediatric Cardiothoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.

出版信息

Cardiovasc Ther. 2025 Aug 14;2025:6412775. doi: 10.1155/cdr/6412775. eCollection 2025.

Abstract

Chronic heart failure (CHF) involves changes in cardiac structure and function, along with extensive neuroendocrine adaptations and metabolic abnormalities. Heart rate variability (HRV) is a noninvasive measure of autonomic nervous system function and is associated with mortality in CHF. However, the significance of HRV in predicting major adverse cardiovascular events (MACEs) in CHF patients has not been fully explored. This study was aimed at investigating the predictive value of HRV parameters assessed by 24-h Holter monitoring for MACEs in CHF patients. This prospective cohort study included 906 CHF patients from five centers in Xinjiang, China, who underwent Holter monitoring and were followed up. Cox proportional hazards regression models were used to assess the independent associations between HRV parameters and the incidence of MACEs. Receiver operating characteristic (ROC) curve analysis was conducted to determine the predictive accuracy of each HRV parameter, and the incremental predictive value of HRV parameters was evaluated using coherence index (-index), net reclassification improvement (NRI), and integrated discrimination improvement (IDI). During a median follow-up of 16 months, 211 (23.3%) MACEs occurred. Cox regression analysis indicated that SDNN (HR: 0.976, 95% CI: 0.9700.981), triangular index (HR: 0.963, 95% CI: 0.9530.973), SDNN index (HR: 0.983, 95% CI: 0.9740.992), SDANN index (HR: 0.974, 95% CI: 0.9670.981), NN50 (HR: 0.859, 95% CI: 0.7870.937), rMSSD (HR: 0.980, 95% CI: 0.9700.989), TP (HR: 0.890, 95% CI: 0.8160.971), VLF (HR: 0.889, 95% CI: 0.8150.969), LF (HR: 0.817, 95% CI: 0.7430.898), and HF (HR: 0.806, 95% CI: 0.7280.893) were independently associated with MACEs. ROC analysis revealed that the triangular index and SDNN had the highest area under the curve (AUC) for predicting MACEs, with values of 0.699 (95% CI: 0.6550.743) and 0.711 (95% CI: 0.6680.753), respectively. Incorporation of HRV parameters into traditional risk models improves the -index, NRI, and IDI of the model's predictive ability for MACE and cardiovascular mortality to varying degrees. SDNN and triangular index demonstrated the strongest predictive abilities; other time-domain and frequency-domain parameters also showed certain predictive values for MACEs.

摘要

慢性心力衰竭(CHF)涉及心脏结构和功能的改变,以及广泛的神经内分泌适应和代谢异常。心率变异性(HRV)是自主神经系统功能的一种非侵入性测量指标,与CHF患者的死亡率相关。然而,HRV在预测CHF患者主要不良心血管事件(MACE)方面的意义尚未得到充分探讨。本研究旨在调查通过24小时动态心电图监测评估的HRV参数对CHF患者MACE的预测价值。这项前瞻性队列研究纳入了来自中国新疆五个中心的906例CHF患者,这些患者接受了动态心电图监测并进行了随访。采用Cox比例风险回归模型评估HRV参数与MACE发生率之间的独立关联。进行受试者工作特征(ROC)曲线分析以确定每个HRV参数的预测准确性,并使用一致性指数(-指数)、净重新分类改善(NRI)和综合判别改善(IDI)评估HRV参数的增量预测价值。在中位随访16个月期间发生了211例(23.3%)MACE。Cox回归分析表明,标准偏差(SDNN)(风险比:0.976,95%置信区间:0.9700.981)、三角指数(风险比:0.963,95%置信区间:0.9530.973)、SDNN指数(风险比:0.983,95%置信区间:0.9740.992)、SDANN指数(风险比:0.974,95%置信区间:0.9670.981)、NN50(风险比:0.859,95%置信区间:0.7870.937)、rMSSD(风险比:0.980,95%置信区间:0.9700.989)、总功率(TP)(风险比:0.890,95%置信区间:0.8160.971)、极低频(VLF)(风险比:0.889,95%置信区间:0.8150.969)、低频(LF)(风险比:0.817,95%置信区间:0.7430.898)和高频(HF)(风险比:0.806,95%置信区间:0.7280.893)与MACE独立相关。ROC分析显示,三角指数和SDNN预测MACE的曲线下面积(AUC)最高,分别为0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验