Patrakka Jani, Hynninen Ville, Huttunen Petteri
Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, Tampere FI-33720, Finland.
Faculty of Built Environment, Tampere University, Korkeakoulunkatu 5, Tampere FI-33720, Finland.
ACS Appl Mater Interfaces. 2025 Sep 3;17(35):49816-49828. doi: 10.1021/acsami.5c10056. Epub 2025 Aug 25.
Because of their tunable refractive index and surface functionalities, biopolymers have emerged as excellent candidates for the fabrication of sustainable optical fibers. To date, the focus has been on identifying suitable biopolymers for optical fiber fabrication and their associated waveguiding properties. Despite a few studies showing their potential for short-distance applications and humidity sensing, the quantitative sensing of environmental parameters using biopolymer optical fibers has not been reported. Herein, for the first time, we report the quantitative determination of relative humidity (RH) across the visible and near-infrared region of the electromagnetic spectra using fully biopolymer optical fibers. Specifically, we demonstrate that methylcellulose and methylcellulose-alginate composite optical fibers exhibit sensitivity of up to 0.33 dB/%RH. Notably, the sensitivity of our fibers is equal to or greater than most of the optical sensors reported in recent literature and exceeds the reported values for capacitance-based humidity sensors. The sensitivity, response time, and dynamic range can be readily tuned by changing the fiber composition and coagulation methods, with ethanol coagulated composite fibers displaying a 6-fold increase in sensitivity compared to ionically coagulated composite fibers. Our results suggest that the humidity sensing properties of fiber sensors are insensitive to temperature changes. Dynamic Vapor Sorption analysis reveals that the fiber composition regulates the sorption-desorption kinetics, thereby affecting the humidity sensing behavior. The fully biopolymer optical fibers open a new avenue for sustainable sensors that enable the quantitative sensing of environmental parameters for condition monitoring applications.
由于其可调谐的折射率和表面功能,生物聚合物已成为制造可持续光纤的优秀候选材料。迄今为止,重点一直放在识别适合光纤制造的生物聚合物及其相关的波导特性上。尽管有一些研究表明它们在短距离应用和湿度传感方面具有潜力,但尚未有关于使用生物聚合物光纤对环境参数进行定量传感的报道。在此,我们首次报告了使用全生物聚合物光纤在电磁光谱的可见光和近红外区域对相对湿度(RH)进行定量测定。具体而言,我们证明甲基纤维素和甲基纤维素 - 海藻酸盐复合光纤表现出高达0.33 dB/%RH的灵敏度。值得注意的是,我们光纤的灵敏度等于或高于近期文献报道的大多数光学传感器,并且超过了基于电容的湿度传感器的报道值。通过改变光纤组成和凝固方法,可以轻松调节灵敏度、响应时间和动态范围,与离子凝固复合光纤相比,乙醇凝固复合光纤的灵敏度提高了6倍。我们的结果表明,光纤传感器的湿度传感特性对温度变化不敏感。动态蒸汽吸附分析表明,光纤组成调节吸附 - 解吸动力学,从而影响湿度传感行为。全生物聚合物光纤为可持续传感器开辟了一条新途径,可实现对环境参数的定量传感,用于状态监测应用。