Suppr超能文献

评估人类外侧膝状体核的有效分割

Evaluating the effective segmentation of human lateral geniculate nucleus.

作者信息

Welbourne Lauren E, Martin Joel T, Segala Federico G, Morsi Anisa Y, Baker Daniel H, Wade Alex R

机构信息

Department of Psychology, University of York, Heslington, York, UK.

School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK.

出版信息

Brain Struct Funct. 2025 Aug 25;230(7):140. doi: 10.1007/s00429-025-03000-9.

Abstract

Important parts of the visual pathway occur in relatively small subcortical structures that are often difficult to identify and segment using standard structural scans in MRI (e.g. T1 and T2 scans). Studies of the Lateral Geniculate Nucleus (LGN) often use proton density (PD) scan protocols, repeated up to 40 times, then manually segment the LGN structure from the average image. Efficiency is crucial when conducting MRI scans: minimising time spent on structural scanning can increase time available for complementary functional MRI scans and/or reduce scanning costs. In this study we asked how segmentation accuracy depended on the number of PD repeats. Four raters segmented the LGN of five participants, using different numbers of PD scans in the average image (1, 2, 4, 8, 16, 24, 32, 40), and an additional experienced expert rater segmented the LGN for just the 40PD average for all participants. We compared how the rater LGN masks at each scan average level overlapped with the expert masks. One rater performed the segmentation for the 40PD average on four separate days, to measure intra-rater variability across repeats. We also used a state-of-the-art automated segmentation process to compare the reliability to manual segmentation. We found that the average overlap between rater masks and the expert masks increased up to the 16PD scan average level, after which there was no additional benefit to including more PD scans. The automated segmentation masks were comparable to the overlap between the raters (40PD) and expert masks.

摘要

视觉通路的重要部分位于相对较小的皮质下结构中,使用MRI中的标准结构扫描(如T1和T2扫描)通常很难识别和分割这些结构。外侧膝状体(LGN)的研究通常采用质子密度(PD)扫描协议,重复多达40次,然后从平均图像中手动分割LGN结构。进行MRI扫描时,效率至关重要:将结构扫描所花费的时间降至最低可以增加可用于补充功能MRI扫描的时间和/或降低扫描成本。在本研究中,我们探讨了分割精度如何取决于PD重复次数。四名评估者对五名参与者的LGN进行分割,在平均图像中使用不同数量的PD扫描(1、2、4、8、16、24、32、40),另外一名经验丰富的专家评估者仅对所有参与者的40PD平均值的LGN进行分割。我们比较了每个扫描平均水平下评估者的LGN掩码与专家掩码的重叠情况。一名评估者在四个不同的日子对40PD平均值进行分割,以测量重复测量时评估者内部的变异性。我们还使用了一种先进的自动分割程序来比较其与手动分割的可靠性。我们发现,评估者掩码与专家掩码之间的平均重叠在16PD扫描平均水平之前增加,此后增加更多的PD扫描没有额外的益处。自动分割掩码与评估者(40PD)和专家掩码之间的重叠相当。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验