Sánchez-Maroto Laura, Devin Guillem A, Gella Pablo, Couce Alejandro
Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Madrid, Spain.
Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.
PLoS Genet. 2025 Aug 25;21(8):e1011832. doi: 10.1371/journal.pgen.1011832. eCollection 2025 Aug.
Newly-arising mutations can impact not only fitness but also an organism's capacity for further adaptation (i.e., its evolvability). Understanding what determines evolvability differences is of great interest from both fundamental and applied perspectives. A general pattern observed across multiple microbes is that evolvability tends to decline with genotype fitness (i.e., the "rule of declining adaptability"), typically attributed to epistatic rather than mutational differences among genotypes. Here, we investigate whether common rpsL point mutations in Escherichia coli, conferring streptomycin resistance, may potentiate or hinder adaptation towards secondary aminoglycosides. We find a version of the rule of declining adaptability in which initially more-fit genotypes experience higher effective beneficial mutation rates but smaller effect sizes than their less-fit counterparts. Genome sequencing reveals the ribosome and electron transport chain as primary targets for adaptation. Second-step mutations typically confer cross-resistance across aminoglycosides, and some even restore fitness costs in the absence of drugs. However, some genotypes deviate markedly from the overall pattern, being completely unable to develop resistance to the secondary aminoglycosides. Such idiosyncratic dead-ends, if common among other systems involving single-point mutants, would expand the pool of potential targets for strategies to promote evolutionary robustness in biotechnology and combat multidrug resistance in clinical microbiology.
新出现的突变不仅会影响适应性,还会影响生物体进一步适应的能力(即其进化能力)。从基础和应用的角度来看,了解决定进化能力差异的因素都非常有趣。在多种微生物中观察到的一个普遍模式是,进化能力往往会随着基因型适应性的降低而下降(即“适应性下降规则”),这通常归因于基因型之间的上位性差异而非突变差异。在这里,我们研究了大肠杆菌中常见的赋予链霉素抗性的rpsL点突变是否可能增强或阻碍对二级氨基糖苷类药物的适应性。我们发现了一种适应性下降规则的版本,即最初适应性更强的基因型经历更高的有效有益突变率,但效应大小比适应性较差的基因型小。基因组测序揭示核糖体和电子传递链是适应的主要靶点。第二步突变通常会赋予对氨基糖苷类药物的交叉抗性,有些甚至在无药物的情况下恢复适应性成本。然而,一些基因型明显偏离总体模式,完全无法对二级氨基糖苷类药物产生抗性。如果这种特殊的死胡同在涉及单点突变体的其他系统中很常见,那么将扩大生物技术中促进进化稳健性和对抗临床微生物学中多药耐药性策略的潜在靶点库。