Giri-Rachman Ernawati Arifin, Kurnianti Al Mirahma Febri, Setyadi Aditya Hanung, Artarini Anita, Tan Marselina Irasonia, Riani Catur, Natalia Dessy, Aditama Reza, Nugrahapraja Husna
School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesa No. 10, Bandung 40132, Indonesia; Biosciences and Biotechnology Research Centre, Institut Teknologi Bandung, Jl. Ganesa No. 10, Bandung, 40132, Indonesia.
School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesa No. 10, Bandung 40132, Indonesia.
J Genet Eng Biotechnol. 2025 Sep;23(3):100524. doi: 10.1016/j.jgeb.2025.100524. Epub 2025 Jun 21.
Despite the decreasing cases, SARS-CoV-2, with its endemic status, still threatens public health, and developing a variant-proof vaccine could be a promising strategy to prevent future infection. In this study, utilizing immunoinformatics and reverse vaccinology, we aimed to develop a multi-epitope mRNA vaccine with high population coverage, targeting multiple variants of SARS-CoV-2.
To design a multivariant vaccine, 20,567 sequences consisting of all SARS-CoV-2's variants of concern whole genome were retrieved. Utilizing an immunoinformatics approach, the selected antigens spike and nucleocapsid proteins were analyzed to predict linear B lymphocyte (LBL), helper T lymphocyte (HTL), and cytotoxic T lymphocyte (CTL) epitopes. These epitopes were evaluated based on antigenicity, toxicity, allergenicity, conservancy, and coverage at both global and Indonesian levels. The identified epitopes were further subjected to molecular docking analysis with MHC molecules and combined into the design of a multi-epitope vaccine. The validated 3D structure of the vaccine construct (VC) was used in molecular docking with TLR4 and BCR. The vaccine construct's potential in eliciting immune responses was also assessed.
The predicted epitopes demonstrated extensive population coverage, encompassing 99.99% of the global population and 99.39% of the Indonesian population, respectively. The selected epitopes consisted of four LBL, five HTL, and three CTL epitopes were combined using linkers to make a multi-epitope construct, which was antigenic, non-allergenic, 257 amino acids long, and most of the structure was coil (61.87%). Furthermore, molecular docking analysis revealed potent interactions between the validated 3D structure and the TLR4 and BCR receptors, while molecular dynamic simulations confirmed the stability of the VC-TLR4 and VC-BCR complexes. Additionally, mRNA codon optimization was performed to enhance vaccine expression efficiency, and secondary structure analysis indicated that the designed mRNA vaccine possessed a stable conformation.
As a result, an mRNA vaccine candidate was obtained with high population coverage and could induce a robust and protective immune response against multiple variants of SARS-CoV-2. Therefore, further studies are required to validate the safety and efficacy of the proposed vaccine candidate.
尽管新冠病毒(SARS-CoV-2)感染病例数在减少,但其地方性流行状态仍对公众健康构成威胁,研发一种能抵御变异毒株的疫苗可能是预防未来感染的一种有前景的策略。在本研究中,我们利用免疫信息学和反向疫苗学,旨在开发一种针对多种SARS-CoV-2变异毒株、具有高人群覆盖率的多表位mRNA疫苗。
为设计一种多变异株疫苗,我们检索了20567条包含所有SARS-CoV-2关注变异株全基因组的序列。利用免疫信息学方法,对选定的抗原刺突蛋白和核衣壳蛋白进行分析,以预测线性B淋巴细胞(LBL)、辅助性T淋巴细胞(HTL)和细胞毒性T淋巴细胞(CTL)表位。基于抗原性、毒性、致敏性、保守性以及全球和印度尼西亚层面的覆盖率对这些表位进行评估。将鉴定出的表位与主要组织相容性复合体(MHC)分子进行进一步的分子对接分析,并将其组合到多表位疫苗的设计中。疫苗构建体(VC)经过验证的3D结构用于与Toll样受体4(TLR4)和B细胞受体(BCR)进行分子对接。还评估了疫苗构建体引发免疫反应的潜力。
预测的表位显示出广泛的人群覆盖率,分别涵盖全球99.99%的人口和印度尼西亚99.39%的人口。选定的表位由四个LBL表位、五个HTL表位和三个CTL表位组成,使用连接子将它们组合成一个多表位构建体,该构建体具有抗原性、无致敏性,长度为257个氨基酸,且大部分结构为卷曲结构(61.87%)。此外,分子对接分析揭示了经过验证的3D结构与TLR4和BCR受体之间存在有效的相互作用,而分子动力学模拟证实了VC-TLR4和VC-BCR复合物的稳定性。另外,进行了mRNA密码子优化以提高疫苗表达效率,二级结构分析表明设计的mRNA疫苗具有稳定的构象。
因此,我们获得了一种具有高人群覆盖率的mRNA疫苗候选物,它能够诱导针对多种SARS-CoV-2变异毒株产生强大的保护性免疫反应。因此,需要进一步研究来验证所提出的疫苗候选物的安全性和有效性。