在宽pH范围内通过压电催化原位生成和激活羟基自由基以驱动羟基自由基介导的污染物降解。

Piezo-catalytic in-site HO generation and activation across wide pH range to drive hydroxyl radical-mediated pollutant degradation.

作者信息

Xu Jing, Gu Kaiye, Wang Peifang, Cheng Pengfei, Che Huinan, Tang Chunmei, Zhang Kan, Ao Yanhui

机构信息

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China.

School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China.

出版信息

Nat Commun. 2025 Aug 25;16(1):7908. doi: 10.1038/s41467-025-63337-x.

Abstract

Hydroxyl radicals (·OH) is one of the most important reactive oxygen species (ROSs) for organic pollution controlling in advanced oxidation processes, while its production suffers from numerous HO addition and narrow pH range in generally used Fenton reaction. Herein, we demonstrate a BiOIO (BIO) piezo-catalyst loaded with γ-FeOOH nanoparticles (FNPs) (BF) that can convert O to ·OH in a wide pH condition without external HO addition under ultrasonication. It is found that the robust interfacial interaction facilitates rapid electron migration from BIO to FNPs, enabling two-electron O reduction into HO at the FNPs site, while the leaving behind piezo-holes to perform two-electron water oxidative HO generation on BIO. Because the electron-rich nature of FNPs favors the H adsorption that contributes a surface acidic micro-environment, the produced HO can be in-situ catalyzed into ·OH in either neutral or even alkaline conditions with a great stability. Finally, the optimal BF can achieve either an impressive ·OH yield of 38.1 µM h or a high HO yield of 522.0 µM h by regulating the FNPs loading mass, which enables dual capabilities of rapid organic pollutants degradation and HO production in a wide pH condition.

摘要

羟基自由基(·OH)是高级氧化过程中控制有机污染的最重要活性氧物种之一,而在常用的芬顿反应中,其生成受到大量HO添加和狭窄pH范围的限制。在此,我们展示了一种负载γ-FeOOH纳米颗粒(FNPs)的BiOIO(BIO)压电催化剂(BF),在超声作用下,无需外部添加HO,该催化剂可在较宽的pH条件下将O转化为·OH。研究发现,强大的界面相互作用促进了电子从BIO快速迁移到FNPs,使FNPs位点处的O通过两电子还原生成HO,同时留下压电空穴在BIO上进行两电子水氧化生成HO。由于FNPs的富电子性质有利于H吸附,从而形成表面酸性微环境,所生成的HO在中性甚至碱性条件下均可原位催化生成·OH,且具有很高的稳定性。最后,通过调节FNPs负载量,最佳的BF可实现38.1 µM h的可观·OH产率或522.0 µM h的高HO产率,从而在较宽的pH条件下具备快速降解有机污染物和生成HO的双重能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d007/12379193/f3b0bc93ed9f/41467_2025_63337_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索