Suppr超能文献

纳米限域引发的低聚反应途径,通过类芬顿反应高效去除酚类污染物。

Nanoconfinement-triggered oligomerization pathway for efficient removal of phenolic pollutants via a Fenton-like reaction.

作者信息

Zhang Xiang, Tang Jingjing, Wang Lingling, Wang Chuan, Chen Lei, Chen Xinqing, Qian Jieshu, Pan Bingcai

机构信息

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.

Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.

出版信息

Nat Commun. 2024 Jan 31;15(1):917. doi: 10.1038/s41467-024-45106-4.

Abstract

Heterogeneous Fenton reaction represents one of the most reliable technologies to ensure water safety, but is currently challenged by the sluggish Fe(III) reduction, excessive input of chemicals for organic mineralization, and undesirable carbon emission. Current endeavors to improve the catalytic performance of Fenton reaction are mostly focused on how to accelerate Fe(III) reduction, while the pollutant degradation step is habitually overlooked. Here, we report a nanoconfinement strategy by using graphene aerogel (GA) to support UiO-66-NH-(Zr) binding atomic Fe(III), which alters the carbon transfer route during phenol removal from kinetically favored ring-opening route to thermodynamically favored oligomerization route. GA nanoconfinement favors the Fe(III) reduction by enriching the reductive intermediates and allows much faster phenol removal than the unconfined analog (by 208 times in terms of first-order rate constant) and highly efficient removal of total organic carbon, i.e., 92.2 ± 3.7% versus 3.6 ± 0.3% in 60 min. Moreover, this oligomerization route reduces the oxidant consumption for phenol removal by more than 95% and carbon emission by 77.9%, compared to the mineralization route in homogeneous Fe+HO system. Our findings may upgrade the regulatory toolkit for Fenton reactions and provide an alternative carbon transfer route for the removal of aqueous pollutants.

摘要

非均相芬顿反应是确保水安全的最可靠技术之一,但目前面临着铁(III)还原缓慢、用于有机矿化的化学物质投入过多以及碳排放不理想等挑战。目前提高芬顿反应催化性能的努力大多集中在如何加速铁(III)的还原上,而污染物降解步骤却常常被忽视。在此,我们报告了一种纳米限域策略,通过使用石墨烯气凝胶(GA)负载UiO-66-NH-(Zr)结合原子铁(III),该策略改变了苯酚去除过程中的碳转移途径,从动力学上有利的开环途径转变为热力学上有利的低聚途径。GA纳米限域通过富集还原中间体促进了铁(III)的还原,并且比未限域的类似物能更快地去除苯酚(一级速率常数提高了208倍),同时能高效去除总有机碳,即在60分钟内分别为92.2±3.7%和3.6±0.3%。此外,与均相铁+过氧化氢体系中的矿化途径相比,这种低聚途径使去除苯酚的氧化剂消耗量减少了95%以上,碳排放减少了77.9%。我们的研究结果可能会升级芬顿反应的调控工具包,并为去除水中污染物提供一种替代的碳转移途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验