Vargas Juan M, Bahloul Mohamed A, Boularas Mohamed M, Yuceel Kaan, Aridhi Slaheddine, Laleg-Kirati Taous-Meriem
Université Paris-Saclay, Inria, CIAMS, Gif-sur-Yvette, 91190, France.
College of Engineering & Advanced Computing, Alfaisal University, Riyadh, 11533, Saudi Arabia.
Sci Rep. 2025 Aug 26;15(1):31325. doi: 10.1038/s41598-025-16598-x.
Pulse Wave Velocity (PWV) is a widely recognized non-invasive biomarker of arterial stiffness and an independent predictor of cardiovascular risk, including atherosclerosis, hypertension, and vascular aging. Accurate, accessible estimation of PWV is, therefore, critical for early cardiovascular health detection and monitoring. This study proposes a novel data-driven approach for PWV estimation using features derived from Limited Penetrable Weighted Visibility Graphs (LPWVGs) constructed from photoplethysmography (PPG) waveforms and their first and second derivatives. By generating multiple LPWVGs with diverse weighting strategies, we capture the PPG signal's rich temporal and morphological characteristics. A wide range of features was extracted, including descriptors from two-dimensional Semi-Classical Signal Analysis (SCSA), frequency-domain features, and morphological shape and local variation metrics. These were used to train an Explainable Boosting Machine (EBM), a glass-box machine learning model combining strong predictive power and interpretability. The proposed method was evaluated using positive and negative testing on real multicycle PPG datasets. The results demonstrate high accuracy and robustness, obtaining an [Formula: see text] and [Formula: see text] in the positive test and a [Formula: see text] for the negative test. These results support the feasibility of this approach for non-invasive PWV estimation in clinical and ambulatory settings, with potential applications in cardiovascular disease screening, risk stratification, and aging research.
脉搏波速度(PWV)是一种广泛认可的动脉僵硬度无创生物标志物,也是心血管风险的独立预测指标,包括动脉粥样硬化、高血压和血管老化。因此,准确、可及的PWV估计对于早期心血管健康检测和监测至关重要。本研究提出了一种新颖的数据驱动方法,用于使用从光电容积脉搏波描记图(PPG)波形及其一阶和二阶导数构建的有限穿透加权可见性图(LPWVG)派生的特征来估计PWV。通过使用不同的加权策略生成多个LPWVG,我们捕捉了PPG信号丰富的时间和形态特征。提取了广泛的特征,包括来自二维半经典信号分析(SCSA)的描述符、频域特征以及形态形状和局部变化度量。这些特征用于训练可解释增强机器(EBM),这是一种结合了强大预测能力和可解释性的白盒机器学习模型。使用真实多周期PPG数据集进行阳性和阴性测试对所提出的方法进行了评估。结果显示出高准确性和鲁棒性,在阳性测试中获得了[公式:见正文]和[公式:见正文],在阴性测试中获得了[公式:见正文]。这些结果支持了这种方法在临床和动态环境中进行无创PWV估计的可行性,在心血管疾病筛查、风险分层和衰老研究中具有潜在应用。