Suppr超能文献

系统:一个用于评估超越系统变异的基因扰动反应预测的框架。

Systema: a framework for evaluating genetic perturbation response prediction beyond systematic variation.

作者信息

Viñas Torné Ramon, Wiatrak Maciej, Piran Zoe, Fan Shuyang, Jiang Liangze, Teichmann Sarah A, Nitzan Mor, Brbić Maria

机构信息

School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland.

Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.

出版信息

Nat Biotechnol. 2025 Aug 25. doi: 10.1038/s41587-025-02777-8.

Abstract

Predicting transcriptional responses to genetic perturbations is challenging in functional genomics. While recent methods aim to infer effects of untested perturbations, their true predictive power remains unclear. Here, we show that current methods struggle to generalize beyond systematic variation, the consistent transcriptional differences between perturbed and control cells arising from selection biases or confounders. We quantify this variation in ten datasets, spanning three technologies and five cell lines, and show that common metrics are susceptible to these biases, leading to overestimated performance. To address this, we introduce Systema, an evaluation framework that emphasizes perturbation-specific effects and identifies predictions that correctly reconstruct the perturbation landscape. Using this framework, we uncover insights into the predictive capabilities of existing methods and show that predicting responses to unseen perturbations is substantially harder than standard metrics suggest. Our work highlights the importance of heterogeneous gene panels and disentangles predictive performance from systematic effects, enabling biologically meaningful developments in perturbation response modeling.

摘要

在功能基因组学中,预测基因扰动的转录反应具有挑战性。虽然最近的方法旨在推断未经测试的扰动的影响,但其真正的预测能力仍不明确。在这里,我们表明,当前的方法难以超越系统变异进行泛化,系统变异是指由于选择偏差或混杂因素导致的扰动细胞和对照细胞之间一致的转录差异。我们在十个数据集(涵盖三种技术和五种细胞系)中量化了这种变异,并表明常用指标易受这些偏差的影响,导致性能被高估。为了解决这个问题,我们引入了Systema,这是一个评估框架,强调扰动特异性效应,并识别能够正确重建扰动格局的预测。使用这个框架,我们揭示了现有方法的预测能力,并表明预测对未见扰动的反应比标准指标所显示的要困难得多。我们的工作强调了异质基因面板的重要性,并将预测性能与系统效应区分开来,从而在扰动反应建模中实现具有生物学意义的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验