Suppr超能文献

挪威云杉(Picea abies)木材特性的跨代基因组预测:使用独立验证进行的评估

Cross-generational genomic prediction of Norway spruce (Picea abies) wood properties: an evaluation using independent validation.

作者信息

Hayatgheibi Haleh, Hallingbäck Henrik R, Gezan Salvador A, Lundqvist Sven-Olof, Grahn Thomas, Scheepers Gerhard, Ranade Sonali Sachin, Kärkkäinen Katri, García Gil M Rosario

机构信息

Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden.

Forestry research Institute Sweden (Skogforsk), Uppsala, 75183, Sweden.

出版信息

BMC Genomics. 2025 Jul 21;26(1):680. doi: 10.1186/s12864-025-11861-x.

Abstract

BACKGROUND

The evaluation of genomic selection (GS) efficiency in forestry has primarily relied on cross-validation schemes that split the same population within a single generation for both training and validation. While useful, this approach may not be reliable for multigenerational breeding. To our knowledge, this is the first study to assess genomic prediction in Norway spruce using a large dataset spanning two generations in two environments. We trained pedigree-based (ABLUP) and marker-based (GBLUP) prediction models under three approaches: forward prediction, backward prediction, and across-environment prediction. The models were evaluated for ring-width, solid-wood and tracheid characteristics, using ~ 6,000 phenotyped and ~ 2,500 genotyped individual. Predictive ability (PA) and prediction accuracy (ACC) were estimated using an independent validation method, ensuring no individuals were shared between training and validation datasets. To assess the trade-off between comprehensive radial history and practical direct methods, we compared GBLUP models trained with cumulative area-weighted density (AWE-GBLUP) and single annual-ring density (SAD-GBLUP) from mother plus-trees. These models were validated using early and mature-stage progeny density measurements across two trials.

RESULTS

Despite the smaller number of individuals used in the GBLUP models, both PA and ACC were generally comparable to those of the ABLUP model, particularly for cross-environment predictions. Overall, forward and backward predictions were significantly higher for density-related and tracheid properties, suggesting that across-generation predictions are feasible for wood properties but may be challenging for growth and low-heritability traits. Notably, SAD-GBLUP provided comparable prediction accuracies to AWE-GBLUP, supporting the use of more practical and cost-effective phenotyping methods in operational breeding programs.

CONCLUSIONS

Our findings highlight the need for context-specific models to improve the accuracy and reliability of genomic prediction in forest tree breeding. Future efforts might aim to expand training populations, incorporate non-additive genetic effects, and validate model performance across cambial ages while accounting for climatic variability during the corresponding growth years. Overall, this study offers a valuable foundation for implementing GS in Norway spruce breeding programs.

摘要

背景

林业中基因组选择(GS)效率的评估主要依赖于交叉验证方案,即在同一代内将同一个群体划分为训练集和验证集。虽然这种方法很有用,但对于多代育种可能并不可靠。据我们所知,这是第一项使用跨越两个环境中的两代的大型数据集来评估挪威云杉基因组预测的研究。我们在三种方法下训练了基于系谱的(ABLUP)和基于标记的(GBLUP)预测模型:向前预测、向后预测和跨环境预测。使用约6000个表型个体和约2500个基因型个体对模型进行了年轮宽度、实木和管胞特征的评估。使用独立验证方法估计预测能力(PA)和预测准确性(ACC),确保训练集和验证集之间没有个体重叠。为了评估综合径向历史和实际直接方法之间的权衡,我们比较了使用母本优树的累积面积加权密度(AWE - GBLUP)和单一年轮密度(SAD - GBLUP)训练的GBLUP模型。这些模型通过两个试验中早期和成熟阶段子代密度测量进行验证。

结果

尽管GBLUP模型中使用的个体数量较少,但PA和ACC通常与ABLUP模型相当,特别是对于跨环境预测。总体而言,向前和向后预测对于密度相关和管胞特性显著更高,表明跨代预测对于木材特性是可行的,但对于生长和低遗传力性状可能具有挑战性。值得注意的是,SAD - GBLUP提供了与AWE - GBLUP相当的预测准确性,支持在实际育种计划中使用更实用且成本效益高的表型方法。

结论

我们的研究结果强调了需要针对具体情况的模型来提高林木育种中基因组预测的准确性和可靠性。未来的努力可能旨在扩大训练群体,纳入非加性遗传效应,并在考虑相应生长年份气候变异性的同时,跨形成层年龄验证模型性能。总体而言,本研究为在挪威云杉育种计划中实施GS提供了有价值的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe00/12278512/c7ffe9fc9a5f/12864_2025_11861_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验