Skøt Leif, Nay Michelle M, Grieder Christoph, Frey Lea A, Pégard Marie, Öhlund Linda, Amdahl Helga, Radovic Jasmina, Jaluvka Libor, Palmé Anna, Ruttink Tom, Lloyd David, Howarth Catherine J, Kölliker Roland
Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom.
Division of Plant Breeding, Fodder Plant Breeding, Agroscope, Zurich, Switzerland.
Front Plant Sci. 2024 Jun 10;15:1407609. doi: 10.3389/fpls.2024.1407609. eCollection 2024.
Genomic prediction has mostly been used in single environment contexts, largely ignoring genotype x environment interaction, which greatly affects the performance of plants. However, in the last decade, prediction models including marker x environment (MxE) interaction have been developed. We evaluated the potential of genomic prediction in red clover ( L.) using field trial data from five European locations, obtained in the Horizon 2020 EUCLEG project. Three models were compared: (1) single environment (SingleEnv), (2) across environment (AcrossEnv), (3) marker x environment interaction (MxE). Annual dry matter yield (DMY) gave the highest predictive ability (PA). Joint analyses of DMY from years 1 and 2 from each location varied from 0.87 in Britain and Switzerland in year 1, to 0.40 in Serbia in year 2. Overall, crude protein (CP) was predicted poorly. PAs for date of flowering (DOF), however ranged from 0.87 to 0.67 for Britain and Switzerland, respectively. Across the three traits, the MxE model performed best and the AcrossEnv worst, demonstrating that including marker x environment effects can improve genomic prediction in red clover. Leaving out accessions from specific regions or from specific breeders' material in the cross validation tended to reduce PA, but the magnitude of reduction depended on trait, region and breeders' material, indicating that population structure contributed to the high PAs observed for DMY and DOF. Testing the genomic estimated breeding values on new phenotypic data from Sweden showed that DMY training data from Britain gave high PAs in both years (0.43-0.76), while DMY training data from Switzerland gave high PAs only for year 1 (0.70-0.87). The genomic predictions we report here underline the potential benefits of incorporating MxE interaction in multi-environment trials and could have perspectives for identifying markers with effects that are stable across environments, and markers with environment-specific effects.
基因组预测大多用于单一环境背景下,很大程度上忽略了基因型与环境的相互作用,而这种相互作用会极大地影响植物的表现。然而,在过去十年中,已开发出包括标记与环境(MxE)相互作用的预测模型。我们利用在“地平线2020”欧盟LEG项目中获得的来自欧洲五个地点的田间试验数据,评估了红三叶草基因组预测的潜力。比较了三种模型:(1)单一环境(SingleEnv),(2)跨环境(AcrossEnv),(3)标记与环境相互作用(MxE)。年干物质产量(DMY)具有最高的预测能力(PA)。对每个地点第1年和第2年的DMY进行联合分析,范围从第1年英国和瑞士的0.87到第2年塞尔维亚的0.40。总体而言,粗蛋白(CP)的预测效果较差。然而,英国和瑞士开花日期(DOF)的PA分别为0.87至0.67。在这三个性状中,MxE模型表现最佳,AcrossEnv模型最差,这表明纳入标记与环境效应可以改善红三叶草的基因组预测。在交叉验证中排除特定区域或特定育种材料的种质倾向于降低PA,但降低幅度取决于性状、区域和育种材料,这表明群体结构对DMY和DOF观察到的高PA有贡献。在来自瑞典的新表型数据上测试基因组估计育种值表明,来自英国的DMY训练数据在两年中都具有较高的PA(0.43 - 0.76),而来自瑞士的DMY训练数据仅在第1年具有较高的PA(0.70 - 0.87)。我们在此报告的基因组预测强调了在多环境试验中纳入MxE相互作用的潜在益处,并可能有助于识别在不同环境中效应稳定的标记以及具有环境特异性效应的标记。