Suppr超能文献

具有坐标条件层的空间自适应卷积网络

Spatially Adaptive Convolutional Networks with Coordinate-Conditioned Layers.

作者信息

Baier Heather, Runfola Dan

机构信息

College of William and Mary, Williamsburg, Virginia.

出版信息

Proc ACM SIGSPATIAL Int Conf Adv Inf. 2024 Nov 22;32:549-552. doi: 10.1145/3678717.3691253.

Abstract

In this study, we present a convolutional neural network (CNN) architecture, GeoConv, designed to improve the accuracy and adaptability of deep learning models using satellite imagery. Traditional CNNs, such as ResNet18, employ fixed-weight convolutional layers - i.e., layers that leverage the same set of weights for each input observation. However, these models can struggle to capture context-specific features inherent in satellite images, which may vary significantly across different geographic regions. To address this challenge, the GeoConv model utilizes dynamic weights that adapt based on the input image coordinates, allowing the model to tailor its feature extraction process to the unique characteristics of different geographic regions. Through experiments, we illustrate the utility of this approach in a case study which leverages satellite imagery to estimate household wealth across 11 countries, with GeoConv explaining an additional 10.12% of the variance in the data compared to a ResNet18 model. These results underscore the importance of incorporating spatially adaptive mechanisms in handling the variability present in satellite imagery. Code is available at: https://github.com/heatherbaier/geoconv.

摘要

在本研究中,我们提出了一种卷积神经网络(CNN)架构GeoConv,旨在利用卫星图像提高深度学习模型的准确性和适应性。传统的CNN,如ResNet18,采用固定权重的卷积层——即对每个输入观测使用同一组权重的层。然而,这些模型可能难以捕捉卫星图像中固有的特定上下文特征,这些特征在不同地理区域可能有很大差异。为应对这一挑战,GeoConv模型利用基于输入图像坐标自适应的动态权重,使模型能够根据不同地理区域的独特特征调整其特征提取过程。通过实验,我们在一个利用卫星图像估计11个国家家庭财富的案例研究中说明了这种方法的效用,与ResNet18模型相比,GeoConv对数据方差的额外解释率为10.12%。这些结果强调了在处理卫星图像中存在的变异性时纳入空间自适应机制的重要性。代码可在以下网址获取:https://github.com/heatherbaier/geoconv

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8178/12372955/2c0eada839d5/nihms-2100571-f0001.jpg

相似文献

1
Spatially Adaptive Convolutional Networks with Coordinate-Conditioned Layers.
Proc ACM SIGSPATIAL Int Conf Adv Inf. 2024 Nov 22;32:549-552. doi: 10.1145/3678717.3691253.
6
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.
JBJS Essent Surg Tech. 2025 Aug 15;15(3). doi: 10.2106/JBJS.ST.23.00027. eCollection 2025 Jul-Sep.
10

本文引用的文献

1
A research agenda for GIScience in a time of disruptions.
Int J Geogr Inf Sci. 2025 Jan;39(1):1-24. doi: 10.1080/13658816.2024.2405191. Epub 2024 Sep 29.
2
Combining satellite imagery and machine learning to predict poverty.
Science. 2016 Aug 19;353(6301):790-4. doi: 10.1126/science.aaf7894.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验