Suppr超能文献

预测骨转移前列腺癌男性患者预后的新型骨扫描特征:一项回顾性研究。

Novel Bone Scan Features for Predicting Prognosis in Men With Bone Metastatic Prostate Cancer: A Retrospective Study.

作者信息

Kim Byung Woo, Han Jang Hee, Yoo Sang Hyun, Do Minh-Tung, Kang Minho, Lee Seung-Bo, Oh Dongkyu, Cheon Gi Jeong, Ku Ja Hyeon, Kwak Cheol, Kim Young-Gon, Jeong Chang Wook

机构信息

Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Korea.

Department of Clinical Medical Sciences, Seoul National University College of Medicine, Seoul, Korea.

出版信息

J Korean Med Sci. 2025 Aug 25;40(33):e206. doi: 10.3346/jkms.2025.40.e206.

Abstract

BACKGROUND

Bone metastasis frequently occurs in patients with prostate cancer, however, a consensus has not been reached regarding bone scan image analysis. We aimed to analyse various bone scan imaging features of metastatic prostate cancer and to assess their impact on prognosis.

METHODS

One thousand five hundred sixty-three paired sets of bone scan images (anterior and posterior) were obtained from patients with metastatic prostate cancer at Seoul National University Hospital. U-Net architecture was used for the segmentation of metastatic bone lesions. Imaging features describing the overall metastatic burden (n = 18) and largest metastatic burden (n = 32) were extracted using computer vision techniques. Kaplan-Meier survival analysis and Cox proportional risk model were used to analyse the prognostic impact of each feature.

RESULTS

The correlation coefficient between the actual number of lesions and that predicted by the deep learning model was 0.87, indicating a strong correlation. Multivariate Cox regression showed that metastasis intensity difference (hazard ratio [HR], 0.53; = 0.002) and the largest metastasis percentage (HR, 0.62; = 0.038) were independently associated with disease progression and were even more strongly associated with the number of metastases (current standard). The Kaplan-Meier curves revealed that a higher total metastasis ratio ( < 0.001), a lower total metastasis intensity difference ( = 0.030), a lower largest metastatic lesion percentage ( < 0.001), higher compactness ( = 0.028), and lower eccentricity ( = 0.070) were associated with shorter progression-free survival.

CONCLUSION

Although the number of bone metastases is a standardised prognostic factor, additional consideration of morphological or intensity-related novel features may be useful to more accurately predict the prognosis of patients with metastatic prostate cancer.

摘要

背景

骨转移在前列腺癌患者中经常发生,然而,关于骨扫描图像分析尚未达成共识。我们旨在分析转移性前列腺癌的各种骨扫描成像特征,并评估它们对预后的影响。

方法

从首尔国立大学医院的转移性前列腺癌患者中获取了1563对(前后位)骨扫描图像。使用U-Net架构对转移性骨病变进行分割。使用计算机视觉技术提取描述总体转移负担(n = 18)和最大转移负担(n = 32)的成像特征。采用Kaplan-Meier生存分析和Cox比例风险模型分析每个特征的预后影响。

结果

深度学习模型预测的病变数量与实际病变数量之间的相关系数为0.87,表明相关性很强。多变量Cox回归显示,转移强度差异(风险比[HR],0.53;P = 0.002)和最大转移百分比(HR,0.62;P = 0.038)与疾病进展独立相关,并且与转移灶数量(当前标准)的相关性更强。Kaplan-Meier曲线显示,较高的总转移率(P < 0.001)、较低的总转移强度差异(P = 0.030)、较低的最大转移灶百分比(P < 0.001)、较高的致密性(P = 0.028)和较低的偏心率(P = 0.070)与无进展生存期较短相关。

结论

尽管骨转移灶数量是一个标准化的预后因素,但额外考虑形态学或强度相关的新特征可能有助于更准确地预测转移性前列腺癌患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0c8/12378022/419ea349963f/jkms-40-e206-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验