Deng Ting, Jia Shuaiqiang, Xue Cheng, Cheng Hailian, Jiao Jiapeng, Chen Xiao, Xia Zhanghui, Dong Mengke, Chen Chunjun, Wu Haihong, He Mingyuan, Han Buxing
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
Institute of Eco-Chongming, Shanghai 202162, China.
J Am Chem Soc. 2025 Sep 10;147(36):32924-32931. doi: 10.1021/jacs.5c09805. Epub 2025 Aug 26.
Urea electrosynthesis from the coelectrolysis of CO and NO (UECN) has emerged as a promising sustainable alternative to traditional energy-intensive methods; however, the rational design of advanced electrocatalysts capable of achieving concurrent optimization of Faradaic efficiency (FE) and urea yield rates continues to pose a fundamental challenge in this field. Herein, we developed a phosphorus-doped Cu/FeO electrocatalyst (denoted as P-Cu/FeO), where phosphorus atoms partially substitute for oxygen atoms within the Cu/FeO heterostructure. This engineered electrocatalyst achieves exceptional urea electrosynthesis performance, delivering a very high Faradaic efficiency of 73.81% with a corresponding yield rate of 62.74 mmol h g at -0.68 V vs RHE, which are superior to most UECN electrocatalysts reported to date. Notably, the urea yield rate can be further boosted to 97.11 mmol h g at -0.88 V vs RHE. Operando spectroscopic characterization and density functional theory (DFT) simulations indicated that P doping modulates the electronic structure of the electrocatalyst surface, which promotes the formation of *CO and *NO, lowers the energy barrier for the coupling of *CO and *NO, and increases *H coverage to facilitate the hydrogenation process during UECN. This multisite cooperative mechanism establishes a new paradigm for designing high-performance electrocatalysts, demonstrating substantial potential for industrial-scale urea production.
通过一氧化碳和一氧化氮的共电解进行尿素电合成(UECN)已成为一种有前景的可持续替代传统能源密集型方法的途径;然而,合理设计能够同时优化法拉第效率(FE)和尿素产率的先进电催化剂,仍然是该领域的一个基本挑战。在此,我们开发了一种磷掺杂的铜/氧化亚铁电催化剂(表示为P-Cu/FeO),其中磷原子部分替代了铜/氧化亚铁异质结构中的氧原子。这种设计的电催化剂实现了优异的尿素电合成性能,在相对于可逆氢电极(RHE)为-0.68 V时,法拉第效率高达73.81%,相应的产率为62.74 mmol h g,优于迄今为止报道的大多数UECN电催化剂。值得注意的是,在相对于RHE为-0.88 V时,尿素产率可进一步提高到97.11 mmol h g。原位光谱表征和密度泛函理论(DFT)模拟表明,磷掺杂调节了电催化剂表面的电子结构,促进了CO和NO的形成,降低了CO和NO耦合的能量势垒,并增加了*H覆盖率,以促进UECN过程中的氢化过程。这种多位点协同机制为设计高性能电催化剂建立了新的范例,展示了工业规模尿素生产的巨大潜力。