压力条件下细菌对环境中微塑料(MPs)降解的增强作用:关键酶、途径及机制

Enhancement of environmental microplastics (MPs) degradation via bacteria under stress conditions: key enzymes, pathways, and mechanisms.

作者信息

Sharma Kanika, Sharma Monika, Thakur Nandini, Ullah Habib, Hassan Sedky H A, Zheng Yuanzhang, Li Xiangkai, Sakran Mohamed, Salama El-Sayed S

机构信息

Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, PR China.

MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou , 730000, Gansu , PR China.

出版信息

World J Microbiol Biotechnol. 2025 Aug 26;41(9):318. doi: 10.1007/s11274-025-04525-1.

Abstract

Microplastics (MPs) are an emerging pollutant that needs effective bioremediation strategies. Strategies, including microbial implementation, enzymes, and insect-mediated degradation, have been effectively deployed and reviewed for the biodegradation of MPs. Thus, this review focused on utilizing multiple stressors (biotic and abiotic) to enhance MPs biodegradation. MPs degradation mechanism, major enzymes involved, and stress-mediated bacterial responses are highlighted. The key routes for MPs biodegradation under various stress are covered. Furthermore, the applications of stresses on wastewater treatment plants (WWTPs) for real-world application are also considered. Thermus sp. is reported to remediate polystyrene (PS) by 43.7% at 40-80 °C stress, whereas pH stress showed enhanced low-density polyethylene (LDPE) biodegradation (9.9%) under B. krulwichiae. Salinity up to 3 M NaCl, when applied to Bacillus sp., showed 48 times higher protease content. Radiation UV-C on P. aeruginosa increased polyethylene/polystyrene (PE/PS) protease activity by 75.47%. The bacterial response to stress was reported to be mediated by enzyme upregulation, biofilm formation, and metabolic shifts. Targeted stress enhanced MPs biodegradation through specific bacterial adaptations and enzymatic activity. Particular stress requires a specific mechanism to accelerate bacterial MPs degradation. Future research should aim to explore the synergistic effects of combined stressors, conduct comprehensive ecological risk assessments, and implement large-scale field trials to ensure the sustainability and ecosystem compatibility of stress-mediated MPs bioremediation.

摘要

微塑料(MPs)是一种新兴污染物,需要有效的生物修复策略。包括微生物应用、酶和昆虫介导的降解在内的策略已被有效地应用于MPs的生物降解,并进行了综述。因此,本综述重点关注利用多种应激因素(生物和非生物)来增强MPs的生物降解。文中强调了MPs的降解机制、主要涉及的酶以及应激介导的细菌反应。涵盖了各种应激条件下MPs生物降解的关键途径。此外,还考虑了应激因素在污水处理厂(WWTPs)实际应用中的情况。据报道,嗜热栖热菌(Thermus sp.)在40-80°C应激条件下可使聚苯乙烯(PS)的修复率达到43.7%,而在克氏芽孢杆菌(B. krulwichiae)作用下,pH应激显示低密度聚乙烯(LDPE)的生物降解增强(9.9%)。当向芽孢杆菌属(Bacillus sp.)施加高达3M NaCl的盐度时,蛋白酶含量提高了48倍。紫外线-C(UV-C)辐射对铜绿假单胞菌(P. aeruginosa)的聚乙烯/聚苯乙烯(PE/PS)蛋白酶活性提高了75.47%。据报道,细菌对应激的反应是由酶上调、生物膜形成和代谢转变介导的。靶向应激通过特定的细菌适应性和酶活性增强了MPs的生物降解。特定的应激需要特定的机制来加速细菌对MPs的降解。未来的研究应旨在探索联合应激因素的协同效应,进行全面的生态风险评估,并开展大规模的田间试验,以确保应激介导的MPs生物修复的可持续性和生态系统兼容性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索