Thiel Jessica, Sürün Duran, Brändle Desiree C, Teichert Madeleine, Künzel Stephan R, Friedrich Ulrike, Dahl Andreas, Schubert Kristin, Rzagalinski Ignacy, Shevchenko Andrej, Traikov Sofia, Mirtschink Peter, Wagenführ Lisa, Buchholz Frank, Hölig Kristina, Tonn Torsten, Kronstein-Wiedemann Romy
Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, Dresden, Germany.
Stem Cell Rev Rep. 2025 Aug 26. doi: 10.1007/s12015-025-10957-x.
In vitro red blood cell (RBC) production offers a promising complement to conventional blood donation, particularly for patients with rare blood types. Previously, we developed imBMEP-A, the first erythroid cell line derived from reticulocyte progenitors, which maintains robust hemoglobin expression and erythroid differentiation in the presence of erythropoietin (EPO) despite its immortalized state. However, clinical translation remains hindered by the inability to scale up production due to impaired in vitro enucleation of RBC progenitor cell lines. Enhancing enucleation efficiency in imBMEP-A cells involved CRISPR/Cas9-mediated knockout (K.O.) of miR-30a-5p, a key enucleation inhibitor, moderately increasing rates to 3.3 ± 0.4%- 8.9 ± 1.7%. Further investigation of enucleation inefficiencies led to transcriptome and proteome comparisons between imBMEP-miR30a-K.O. cells and hematopoietic stem cells (HSCs). These analyses revealed altered gene expression and protein abundances linked to metabolic transitions, apoptosis promotion, and cytoskeletal regulation. Notably, forced expression of the proto-oncogene c-Myc, required for cell immortalization, emerged as a key driver of these physiological changes. Counteracting these effects required optimization of imBMEP-A cells by activating BCL-XL transcription and knocking out SCIN, which encodes the actin-severing protein scinderin. While BCL-XL is upregulated in normal erythropoiesis, it is downregulated in imBMEP-A. Conversely, SCIN, typically absent in erythroid cells, is highly expressed in imBMEP-A, disrupting actin organization. These interventions improved viability, restored actin network formation, and increased terminal erythropoiesis, yielding 22.1 ± 1.7% more orthochromatic erythroblasts. These findings establish a foundation for optimizing imBMEP-A cells for therapeutic use and advancing the understanding the pathophysiology of erythroleukemia.
体外红细胞(RBC)生成是传统献血的一种有前景的补充方式,尤其对于稀有血型患者。此前,我们开发了imBMEP-A,这是首个源自网织红细胞祖细胞的红系细胞系,尽管其处于永生化状态,但在促红细胞生成素(EPO)存在的情况下仍能维持强大的血红蛋白表达和红系分化。然而,由于RBC祖细胞系的体外去核受损,无法扩大生产规模,这阻碍了其临床转化。提高imBMEP-A细胞的去核效率涉及通过CRISPR/Cas9介导敲除关键去核抑制剂miR-30a-5p,去核率适度提高至3.3±0.4%-8.9±1.7%。对去核效率低下的进一步研究导致了imBMEP-miR30a敲除细胞与造血干细胞(HSC)之间的转录组和蛋白质组比较。这些分析揭示了与代谢转变、凋亡促进和细胞骨架调节相关的基因表达和蛋白质丰度的改变。值得注意的是,细胞永生化所需的原癌基因c-Myc的强制表达成为这些生理变化的关键驱动因素。抵消这些影响需要通过激活BCL-XL转录和敲除编码肌动蛋白切割蛋白scinderin的SCIN来优化imBMEP-A细胞。虽然BCL-XL在正常红细胞生成中上调,但在imBMEP-A中下调。相反,红系细胞中通常不存在的SCIN在imBMEP-A中高度表达,破坏肌动蛋白组织。这些干预措施提高了细胞活力,恢复了肌动蛋白网络形成,并增加了终末红细胞生成,正染红细胞增多了22.1±1.7%。这些发现为优化imBMEP-A细胞用于治疗用途以及推进对红白血病病理生理学的理解奠定了基础。