Suppr超能文献

DIA-NN:神经网络和干扰校正可实现高通量下的深度蛋白质组覆盖。

DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput.

机构信息

Department of Biochemistry and The Milner Therapeutics Institute, University of Cambridge, Cambridge, UK.

The Francis Crick Institute, Molecular Biology of Metabolism laboratory, London, UK.

出版信息

Nat Methods. 2020 Jan;17(1):41-44. doi: 10.1038/s41592-019-0638-x. Epub 2019 Nov 25.

Abstract

We present an easy-to-use integrated software suite, DIA-NN, that exploits deep neural networks and new quantification and signal correction strategies for the processing of data-independent acquisition (DIA) proteomics experiments. DIA-NN improves the identification and quantification performance in conventional DIA proteomic applications, and is particularly beneficial for high-throughput applications, as it is fast and enables deep and confident proteome coverage when used in combination with fast chromatographic methods.

摘要

我们提出了一个易于使用的集成软件套件 DIA-NN,该套件利用深度神经网络和新的定量和信号校正策略,用于处理数据非依赖采集(DIA)蛋白质组学实验。DIA-NN 提高了传统 DIA 蛋白质组学应用中的鉴定和定量性能,对于高通量应用特别有益,因为它速度快,并且当与快速色谱方法结合使用时,能够实现深度和可靠的蛋白质组覆盖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81a9/6949130/dacdcd17bf45/EMS84588-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验