Suppr超能文献

DIA-NN:神经网络和干扰校正可实现高通量下的深度蛋白质组覆盖。

DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput.

机构信息

Department of Biochemistry and The Milner Therapeutics Institute, University of Cambridge, Cambridge, UK.

The Francis Crick Institute, Molecular Biology of Metabolism laboratory, London, UK.

出版信息

Nat Methods. 2020 Jan;17(1):41-44. doi: 10.1038/s41592-019-0638-x. Epub 2019 Nov 25.

Abstract

We present an easy-to-use integrated software suite, DIA-NN, that exploits deep neural networks and new quantification and signal correction strategies for the processing of data-independent acquisition (DIA) proteomics experiments. DIA-NN improves the identification and quantification performance in conventional DIA proteomic applications, and is particularly beneficial for high-throughput applications, as it is fast and enables deep and confident proteome coverage when used in combination with fast chromatographic methods.

摘要

我们提出了一个易于使用的集成软件套件 DIA-NN,该套件利用深度神经网络和新的定量和信号校正策略,用于处理数据非依赖采集(DIA)蛋白质组学实验。DIA-NN 提高了传统 DIA 蛋白质组学应用中的鉴定和定量性能,对于高通量应用特别有益,因为它速度快,并且当与快速色谱方法结合使用时,能够实现深度和可靠的蛋白质组覆盖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81a9/6949130/dacdcd17bf45/EMS84588-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验