Chen Sicheng, Ouyang Qunle, Miao Xuanbo, Zhang Feng, Chen Zehua, Qian Xiaoyan, Xie Jinwei, Yan Zheng
Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA.
Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA.
Nanomicro Lett. 2025 Aug 26;18(1):45. doi: 10.1007/s40820-025-01890-2.
Wearable ultrasound devices represent a transformative advancement in therapeutic applications, offering noninvasive, continuous, and targeted treatment for deep tissues. These systems leverage flexible materials (e.g., piezoelectric composites, biodegradable polymers) and conformable designs to enable stable integration with dynamic anatomical surfaces. Key innovations include ultrasound-enhanced drug delivery through cavitation-mediated transdermal penetration, accelerated tissue regeneration via mechanical and electrical stimulation, and precise neuromodulation using focused acoustic waves. Recent developments demonstrate wireless operation, real-time monitoring, and closed-loop therapy, facilitated by energy-efficient transducers and AI-driven adaptive control. Despite progress, challenges persist in material durability, clinical validation, and scalable manufacturing. Future directions highlight the integration of nanomaterials, 3D-printed architectures, and multimodal sensing for personalized medicine. This technology holds significant potential to redefine chronic disease management, postoperative recovery, and neurorehabilitation, bridging the gap between clinical and home-based care.
可穿戴超声设备代表了治疗应用中的一项变革性进展,为深部组织提供无创、连续且有针对性的治疗。这些系统利用柔性材料(如压电复合材料、可生物降解聚合物)和贴合的设计,以实现与动态解剖表面的稳定集成。关键创新包括通过空化介导的透皮渗透实现超声增强药物递送、通过机械和电刺激加速组织再生,以及使用聚焦声波进行精确的神经调节。近期的进展展示了无线操作、实时监测和闭环治疗,这得益于节能换能器和人工智能驱动的自适应控制。尽管取得了进展,但在材料耐久性、临床验证和可扩展制造方面仍存在挑战。未来的发展方向突出了纳米材料、3D打印架构和多模态传感在个性化医疗中的整合。这项技术在重新定义慢性病管理、术后恢复和神经康复方面具有巨大潜力,弥合了临床护理和家庭护理之间的差距。