Macias-Contreras Marla I, Millán-Aguiñaga Natalie, Parra Jonathan, Duncan Katherine R
Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK.
Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México.
Microbiology (Reading). 2025 Aug;171(8). doi: 10.1099/mic.0.001598.
Rare actinomycetes are increasingly recognised as a valuable yet underexplored source of bioactive compounds with significant biomedical potential. While it is well established that bacteria have evolved adaptive mechanisms to withstand environmental stressors, such as variations in temperature, salinity or pH, our understanding of how these abiotic parameters influence bacterial metabolism remains limited. This has important implications not only for laboratory cultivation but also for predicting microbial behaviour in natural ecosystems. In this study, we investigated the effect of temperature on specialized metabolite production by the genus . Seven strains isolated from marine sediments in three regions - Scotland, the sub-Arctic and Antarctica - were cultured at 20, 25 and 30 °C. Strain-specific growth curves were generated to normalize metabolite extraction at equivalent growth stages, resulting in a total of 54 metabolite extracts. Liquid chromatography-high-resolution mass spectrometry analysis combined with molecular networking revealed that lower cultivation temperatures reduced bacterial biomass and delayed the onset of the stationary phase, and strain KRD197 exhibited temperature shifts in metabolism that were associated with alterations in carbohydrate and fatty acid metabolism, potentially linked to osmotic regulation and cell membrane adaptation. These findings highlight the impact of temperature on -specialized metabolism and support the potential of rare actinomycetes from extreme environments for expanding chemistry from these understudied genera.
稀有放线菌越来越被认为是具有重要生物医学潜力的生物活性化合物的宝贵但未充分探索的来源。虽然人们已经充分认识到细菌已经进化出适应机制来抵御环境压力,如温度、盐度或pH值的变化,但我们对这些非生物参数如何影响细菌代谢的理解仍然有限。这不仅对实验室培养具有重要意义,而且对预测自然生态系统中的微生物行为也具有重要意义。在本研究中,我们调查了温度对该属特殊代谢产物产生的影响。从苏格兰、亚北极和南极洲三个地区的海洋沉积物中分离出的七株菌株在20、25和30°C下培养。生成了菌株特异性生长曲线,以便在等效生长阶段对代谢产物提取进行标准化,总共得到54种代谢产物提取物。液相色谱-高分辨率质谱分析结合分子网络显示,较低的培养温度降低了细菌生物量并延迟了稳定期的开始,菌株KRD197表现出代谢中的温度变化,这与碳水化合物和脂肪酸代谢的改变有关,可能与渗透调节和细胞膜适应有关。这些发现突出了温度对特殊代谢的影响,并支持来自极端环境的稀有放线菌在扩展这些研究较少的属的化学物质方面的潜力。