Zhu Yurun
School of Transportation, Southeast University, Nanjing, China.
PLoS One. 2025 Aug 26;20(8):e0319115. doi: 10.1371/journal.pone.0319115. eCollection 2025.
This study evaluates the effectiveness of Stopping for Right-Turning Large Vehicles Policy in Nanjing, designed to mitigate accidents attributed to blind spots and delayed braking of large trucks at intersections. Using high-resolution conflict data from four signalized intersections in Jiangning District, collected via unmanned aerial vehicles (UAVs) and roadside video, the research employs K-means clustering for conflict severity classification and binomial Logit regression to identify critical determinants. Results reveal the policy exhibited limited statistical significance in reducing severe conflicts (p > 0.05). Regression analysis quantified four critical determinants: absence of motorized/non-motorized segregation (OR=1.82, + 81.6% severity odds), elevated stop-line speeds (OR=1.32, + 31.9%), failure to yield (OR=2.45, + 145%), and crossing the street within the zebra crossing (OR=0.19, -81.0%). The analysis demonstrates that infrastructural deficiencies and behavioral non-compliance outweigh the policy's standalone impact. Based on these findings, the study proposes a holistic optimization framework integrating physical separation measures, enhanced signage, dynamic traffic signal adjustments, and data-driven enforcement strategies. Methodologically, this study innovatively combines unsupervised learning for conflict categorization, providing a scalable framework for evaluating urban traffic policies. This research underscores the necessity of multi-dimensional interventions-spanning infrastructure, enforcement, and public education-to achieve sustainable improvements in intersection safety. The findings offer actionable insights for policymakers to refine regulatory measures and enhance road safety in rapidly urbanizing environments.
本研究评估了南京市“大型车辆右转停车政策”的有效性,该政策旨在减少因大型卡车在十字路口的盲区和制动延迟而导致的事故。研究利用通过无人机(UAV)和路边视频收集的江宁区四个信号控制交叉口的高分辨率冲突数据,采用K均值聚类进行冲突严重程度分类,并使用二项式Logit回归来确定关键决定因素。结果显示,该政策在减少严重冲突方面的统计学意义有限(p>0.05)。回归分析量化了四个关键决定因素:缺乏机动车/非机动车分隔(OR=1.82,严重程度几率增加81.6%)、停车线速度升高(OR=1.32,增加31.9%)、未让行(OR=2.45,增加145%)以及在斑马线内过马路(OR=0.19,降低81.0%)。分析表明,基础设施缺陷和行为不遵守比该政策的单独影响更为重要。基于这些发现,该研究提出了一个整体优化框架,整合了物理隔离措施、增强的 signage、动态交通信号调整和数据驱动的执法策略。在方法上,本研究创新性地将无监督学习用于冲突分类,为评估城市交通政策提供了一个可扩展的框架。本研究强调了跨基础设施、执法和公共教育的多维度干预对于实现交叉口安全可持续改善的必要性。这些发现为政策制定者在快速城市化环境中完善监管措施和提高道路安全提供了可操作的见解。