Zhang Chengzhu, Xue Lan, Chen Yu, Lian Heng, Qu Annie
Department of Statistics, Oregon State University.
Department of Statistics and Finance.
J Am Stat Assoc. 2024 Dec 16. doi: 10.1080/01621459.2024.2423972.
In spatial analysis, it is essential to understand and quantify spatial or temporal heterogeneity. This paper focuses on the generalized spatially varying coefficient model (GSVCM), a powerful framework to accommodate spatial heterogeneity by allowing regression coefficients to vary in a given spatial domain. We propose a penalized bivariate spline method for detecting local signals in GSVCM. The key idea is to use bivariate splines defined on triangulation to approximate nonparametric varying coefficient functions and impose a local penalty on norms of spline coefficients for each triangle to identify null regions of zero effects. Moreover, we develop model confidence regions as the inference tool to quantify the uncertainty of the estimated null regions. Our method partitions the region of interest using triangulation and efficiently approximates irregular domains. In addition, we propose an efficient algorithm to obtain the proposed estimator using the local quadratic approximation. We also establish the consistency of estimated nonparametric coefficient functions and the estimated null regions. The numerical performance of the proposed method is evaluated in both simulation cases and real data analysis.
在空间分析中,理解和量化空间或时间异质性至关重要。本文聚焦于广义空间变系数模型(GSVCM),这是一个通过允许回归系数在给定空间域中变化来适应空间异质性的强大框架。我们提出一种惩罚双变量样条方法来检测GSVCM中的局部信号。关键思想是使用定义在三角剖分上的双变量样条来近似非参数变系数函数,并对每个三角形的样条系数范数施加局部惩罚以识别零效应的空区域。此外,我们开发模型置信区域作为推断工具来量化估计的空区域的不确定性。我们的方法使用三角剖分对感兴趣区域进行划分,并有效地近似不规则域。另外,我们提出一种高效算法,利用局部二次近似来获得所提出的估计器。我们还建立了估计的非参数系数函数和估计的空区域的一致性。在模拟案例和实际数据分析中均评估了所提出方法的数值性能。