Xu Xiaoming, Ghosh Dhrubajyoti, Luo Sheng
Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
Stat Biopharm Res. 2025 Mar 17. doi: 10.1080/19466315.2025.2458018.
Neurodegenerative disorders such as Alzheimer's disease (AD) present a significant global health challenge, characterized by cognitive decline, functional impairment, and other debilitating effects. Current AD clinical trials often assess multiple longitudinal primary endpoints to comprehensively evaluate treatment efficacy. Traditional methods, however, may fail to capture global treatment effects, require larger sample sizes due to multiplicity adjustments, and may not fully utilize the available longitudinal data. To address these limitations, we introduce the Longitudinal Rank Sum Test (LRST), a novel nonparametric rank-based omnibus test statistic. The LRST enables a comprehensive assessment of treatment efficacy across multiple endpoints and time points without the need for multiplicity adjustments, effectively controlling Type I error while enhancing statistical power. It offers flexibility for various data distributions encountered in AD research and maximizes the utilization of longitudinal data. Simulations across realistic clinical trial scenarios, including those with conflicting treatment effects, and real-data applications demonstrate the LRST's performance, underscoring its potential as a valuable tool in AD clinical trials.
神经退行性疾病,如阿尔茨海默病(AD),是一项重大的全球健康挑战,其特征为认知能力下降、功能受损以及其他使人衰弱的影响。当前的AD临床试验通常会评估多个纵向主要终点,以全面评估治疗效果。然而,传统方法可能无法捕捉整体治疗效果,由于多重性调整需要更大的样本量,并且可能无法充分利用可用的纵向数据。为了解决这些局限性,我们引入了纵向秩和检验(LRST),这是一种基于秩的新型非参数综合检验统计量。LRST能够在无需多重性调整的情况下,对多个终点和时间点的治疗效果进行全面评估,有效控制I型错误的同时增强统计效力。它为AD研究中遇到的各种数据分布提供了灵活性,并最大限度地利用了纵向数据。在包括具有冲突治疗效果的实际临床试验场景中的模拟以及实际数据应用证明了LRST的性能,突显了其作为AD临床试验中一种有价值工具的潜力。