Suppr超能文献

脉冲电解通过N-杂铜卟啉开启CO甲烷化反应。

Pulse Electrolysis Turns on CO Methanation through N-Confused Cupric Porphyrin.

作者信息

Hua Wei, Liu Tingting, Zheng Zhangyi, Yuan Huihong, Xiao Long, Feng Kun, Hui Jingshu, Deng Zhao, Ma Mutian, Cheng Jian, Song Daqi, Lyu Fenglei, Zhong Jun, Peng Yang

机构信息

Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China.

Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2024 Mar 18;63(12):e202315922. doi: 10.1002/anie.202315922. Epub 2024 Feb 16.

Abstract

Breaking the D symmetry in the square-planar M-N configuration of macrocycle molecular catalysts has witnessed enhanced electrocatalytic activity, but at the expense of electrochemical stability. Herein, we hypothesize that the lability of the active Cu-N motifs in the N-confused copper (II) tetraphenylporphyrin (CuNCP) could be overcome by applying pulsed potential electrolysis (PPE) during electrocatalytic carbon dioxide reduction. We find that applying PPE can indeed enhance the CH selectivity on CuNCP by 3 folds to reach the partial current density of 170 mA cm at >60 % Faradaic efficiency (FE) in flow cell. However, combined ex situ X-ray diffraction (XRD), transmission electron microscope (TEM), and in situ X-ray absorption spectroscopy (XAS), infrared (IR), Raman, scanning electrochemical microscopy (SECM) characterizations reveal that, in a prolonged time scale, the decomplexation of CuNCP is unavoidable, and the promoted water dissociation under high anodic bias with lowered pH and enriched protons facilitates successive hydrogenation of *CO on the irreversibly reduced Cu nanoparticles, leading to the improved CH selectivity. As a key note, this study signifies the adaption of electrolytic protocol to the catalyst structure for tailoring local chemical environment towards efficient CO reduction.

摘要

打破大环分子催化剂平面正方形M-N构型中的D对称性已见证了增强的电催化活性,但以电化学稳定性为代价。在此,我们假设在电催化二氧化碳还原过程中通过施加脉冲电位电解(PPE)可以克服N-混淆铜(II)四苯基卟啉(CuNCP)中活性Cu-N基序的不稳定性。我们发现,施加PPE确实可以使CuNCP上的CH选择性提高3倍,在流通池中>60%的法拉第效率(FE)下达到170 mA cm的分电流密度。然而,结合非原位X射线衍射(XRD)、透射电子显微镜(TEM)以及原位X射线吸收光谱(XAS)、红外(IR)、拉曼、扫描电化学显微镜(SECM)表征表明,在较长时间尺度上,CuNCP的去络合是不可避免的,并且在高阳极偏压下pH降低和质子富集促进的水离解有利于*CO在不可逆还原的Cu纳米颗粒上的连续氢化,从而导致CH选择性提高。作为一个关键要点,本研究表明电解方案对催化剂结构的适应性,以调整局部化学环境实现高效的CO还原。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验