Suppr超能文献

通过探索不同的特征选择技术,基于监督模型检测多囊卵巢综合征与维生素D缺乏的关系。

Supervised model based polycystic ovarian syndrome detection in relation to vitamin d deficiency by exploring different feature selection techniques.

作者信息

Archana A, Sumathi V

机构信息

School of Electrical Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India.

Centre for E-Automation Technologies, School of Electrical Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India.

出版信息

Sci Rep. 2025 Aug 26;15(1):31481. doi: 10.1038/s41598-025-14728-z.

Abstract

Due to urbanization and modern lifestyle, most of women in today's world are prone to Polycystic Ovarian Syndrome (PCOS), which is a hormonal disorder. Though the symptoms shown by this disease are often uncared, it seriously affects the reproductive health of women. Early detection of PCOS helps in managing several other attributes that are closely related to it. This article aims to study the impact of Vitamin D3 in PCOS and non-PCOS individuals. The goal is attained by building a tailored dataset with 1368 records and 43 attributes. Initially, the acquired dataset is pre-processed by handling missed values, outlier detection and data balancing by employing Probabilistic Principal Component Analysis (PPCA), Interquartile Range (IQR), Z-score standardization and SMOTE respectively. The significant features are selected by exploring different approaches such as filter based (Chi-Square, ANOVA), wrapper based (Electric Eel Foraging Optimization Algorithm) and embedded methods (LASSO, XGBoost). The selected features are utilized to train classifiers such as Random Forest (RF), k-Nearest Neighbour (k-NN), Decision Tree (DT) and Support Vector Machine (SVM). The experimental results show that the performance of EEFOA with RF prove the best accuracy rates of 98.8% with a F-measure of 98.19%. Explainable Artificial Intelligence (XAI) techniques such as SHAP and LIME are then employed to showcase the feature importance. It is observed that over 40% of PCOS patients are affected by deficiency and insufficiency of vitamin D3.

摘要

由于城市化和现代生活方式,当今世界的大多数女性都容易患多囊卵巢综合征(PCOS),这是一种激素紊乱疾病。尽管这种疾病表现出的症状常常被忽视,但它严重影响女性的生殖健康。早期发现多囊卵巢综合征有助于管理与之密切相关的其他几个方面。本文旨在研究维生素D3对多囊卵巢综合征患者和非多囊卵巢综合征患者的影响。通过构建一个包含1368条记录和43个属性的定制数据集来实现这一目标。最初,通过分别采用概率主成分分析(PPCA)、四分位距(IQR)、Z分数标准化和SMOTE来处理缺失值、异常值检测和数据平衡,对获取的数据集进行预处理。通过探索不同的方法,如基于过滤器的方法(卡方检验、方差分析)、基于包装器的方法(电鳗觅食优化算法)和嵌入式方法(套索回归、极端梯度提升)来选择显著特征。利用所选特征训练分类器,如随机森林(RF)、k近邻(k-NN)、决策树(DT)和支持向量机(SVM)。实验结果表明,电鳗觅食优化算法与随机森林相结合的性能证明了最佳准确率为98.8%,F值为98.19%。然后采用可解释人工智能(XAI)技术,如SHAP和LIME来展示特征重要性。据观察,超过40%的多囊卵巢综合征患者受到维生素D3缺乏和不足的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验