Courtney O'Toole Ciarán, Boakye Nancy Fosua, Hannigan Ailish, Jalali Amirhossein
School of Medicine, University of Limerick, Limerick, Ireland.
Health Research Institute, University of Limerick, Limerick, Ireland.
Prostate Cancer Prostatic Dis. 2025 Aug 26. doi: 10.1038/s41391-025-01014-2.
Prostate cancer (PCa) is the second most common cancer among men worldwide. Current diagnostic methods often lack sufficient sensitivity and specificity, leading to unnecessary biopsy. With growing use of MRI and EAU guideline recommendations, this review synthesised evidence on MRI-based risk calculators (RCs) for PCa diagnosis and compared their performance with traditional clinical RCs.
A systematic search of Embase, Medline, Scopus, Cochrane Library, and Web of Science databases assessed the discriminatory ability of MRI-based RCs using Area Under the Curve (AUC). A meta-analysis was conducted to pool AUC estimates, assess heterogeneity, and compare the differences in discriminatory ability.
Of 2049 papers, 16 met the inclusion criteria. MRI-based RCs showed increased discrimination, with an AUC of 0.84 (95% CI: 0.81-0.86) for clinically significant PCa (csPCa), compared to 0.76 (95% CI: 0.73-0.79) for clinical models, and an AUC of 0.81 (95% CI: 0.78-0.84) for all PCa, compared to 0.74 (95% CI: 0.68-0.79). The pooled logit(AUC) difference was 0.49 units for csPCa and 0.37 units for all PCa. High heterogeneity was noted, likely due to PCa variability, and 31% of the studies had a high or unclear risk of bias, potentially affecting generalisability.
MRI-based RCs improve the diagnostic accuracy for PCa with the potential to reduce unnecessary biopsies and optimise healthcare resources, thereby supporting their integration into clinical practice.
前列腺癌(PCa)是全球男性中第二常见的癌症。目前的诊断方法往往缺乏足够的敏感性和特异性,导致不必要的活检。随着MRI的使用日益增加以及欧洲泌尿外科学会(EAU)指南的推荐,本综述综合了基于MRI的风险计算器(RCs)用于PCa诊断的证据,并将其性能与传统临床RCs进行了比较。
对Embase、Medline、Scopus、Cochrane图书馆和Web of Science数据库进行系统检索,使用曲线下面积(AUC)评估基于MRI的RCs的鉴别能力。进行荟萃分析以汇总AUC估计值、评估异质性并比较鉴别能力的差异。
在2049篇论文中,16篇符合纳入标准。基于MRI的RCs显示出更高的鉴别能力,对于临床显著性前列腺癌(csPCa),AUC为0.84(95%CI:0.81 - 0.86),而临床模型的AUC为0.76(95%CI:0.73 - 0.79);对于所有前列腺癌,AUC为0.81(95%CI:0.78 - 0.84),而临床模型的AUC为0.74(95%CI:0.68 - 0.79)。csPCa的合并logit(AUC)差异为0.49个单位,所有PCa为0.37个单位。注意到存在高度异质性,可能是由于PCa的变异性,并且31%的研究存在高或不明确的偏倚风险,可能影响普遍性。
基于MRI的RCs提高了PCa的诊断准确性,有可能减少不必要的活检并优化医疗资源,从而支持将其纳入临床实践。