Atabi Fereshteh, Moassesfar Mahdi, Nakhaie Tara, Bagherian Mobina, Hosseinpour Niloufar, Hashemi Mehrdad
Department of Biochemistry and Biophysics, TeMS.C., Islamic Azad University, Tehran, Iran.
Department of Laboratory Sciences, TeMS.C., Islamic Azad University, Tehran, Iran.
Diabetol Metab Syndr. 2025 Aug 27;17(1):356. doi: 10.1186/s13098-025-01930-2.
Alzheimer's disease (AD) is increasingly associated with metabolic dysfunction, particularly insulin resistance, which impairs neuronal signaling and energy metabolism. Disruption of brain insulin pathways contributes to amyloid-beta accumulation, tau pathology, and neuroinflammation. These shared features have led to the concept of "Type 3 Diabetes" (T3D). This review aims to investigate the molecular links between insulin resistance and AD and to highlight emerging therapeutic strategies.
A systematic review was conducted in accordance with PRISMA guidelines using PubMed, Scopus, Web of Science, and the Cochrane Library to identify studies published between January 2010 and July 2025. Search terms included "Diabetes Mellitus", "Insulin Resistance", "Alzheimer Disease", "Nerve Degeneration", "Cognitive Dysfunction", and other related molecular and clinical keywords. After removing duplicates and applying predefined inclusion and exclusion criteria, a total of 213 peer-reviewed articles were included in the final analysis.
Insulin resistance was consistently identified as a key pathological driver, impairing brain glucose uptake, amyloid-beta clearance, and tau phosphorylation. Disruption of insulin signaling pathways, especially PI3K/Akt and GLUT4 translocation, was associated with neuroinflammation, oxidative stress, and cognitive decline. Additionally, transcriptomic data highlighted the role of non-coding RNAs, including MEG3 and MALAT1, in modulating insulin sensitivity and glucose homeostasis, linking metabolic imbalance to neuronal dysfunction.
Insulin resistance and disrupted glucose metabolism play a central role in the development and progression of AD, supporting the concept of T3D. Targeting these pathways shows promising neuroprotective potential. Future studies should focus on validating these interventions in large-scale clinical trials.
阿尔茨海默病(AD)与代谢功能障碍,尤其是胰岛素抵抗的关联日益增加,胰岛素抵抗会损害神经元信号传导和能量代谢。脑胰岛素信号通路的破坏会导致β-淀粉样蛋白积累、tau蛋白病变和神经炎症。这些共同特征催生了“3型糖尿病”(T3D)这一概念。本综述旨在研究胰岛素抵抗与AD之间的分子联系,并突出新兴的治疗策略。
按照PRISMA指南,利用PubMed、Scopus、科学网和考科蓝图书馆进行系统综述,以识别2010年1月至2025年7月发表的研究。检索词包括“糖尿病”“胰岛素抵抗”“阿尔茨海默病”“神经退行性变”“认知功能障碍”以及其他相关的分子和临床关键词。在去除重复项并应用预定义的纳入和排除标准后,最终分析共纳入213篇经同行评审的文章。
胰岛素抵抗一直被确定为关键的病理驱动因素,损害脑葡萄糖摄取、β-淀粉样蛋白清除和tau蛋白磷酸化。胰岛素信号通路的破坏,尤其是PI3K/Akt和GLUT4易位,与神经炎症、氧化应激和认知衰退有关。此外,转录组数据突出了包括MEG3和MALAT1在内的非编码RNA在调节胰岛素敏感性和葡萄糖稳态中的作用,将代谢失衡与神经元功能障碍联系起来。
胰岛素抵抗和葡萄糖代谢紊乱在AD的发生和发展中起核心作用,支持T3D这一概念。针对这些通路显示出有前景的神经保护潜力。未来的研究应专注于在大规模临床试验中验证这些干预措施。