Anderluzzi Giulia, Mohamed Tasnim, Moschetti Giorgia, Del Favero Elena, Rizzello Loris, Magnaghi Valerio, Franzé Silvia, Cilurzo Francesco
Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
Int J Nanomedicine. 2025 Aug 19;20:10021-10041. doi: 10.2147/IJN.S513568. eCollection 2025.
Lipopolyplexes (LPP), i.e. hybrid ternary complexes of cationic polymers, nucleic acids and liposomes, represent a second-generation non-viral vector aiming to overcome the limitations of the first-generation polyplexes and lipoplexes like in vivo toxicity and ineffective transfection efficiency. Although their potential has already been proven in vitro and in vivo, lipopolyplexes are still poorly explored as gene delivery systems. Here, we provid evidence of the effect of lipopolyplexes composition on their physicochemical features, cytotoxicity, and biological activity (i.e. cell uptake, endosomal escape, and transfection efficiency).
Lipopolyplexes were prepared by either bulk mixing or a two-step microfluidic process consisting of i) the formation of polyplexes by complexing a plasmid DNA encoding the green fluorescence protein with a panel of cationic polymers (either chitosan, poly-L-lysine (PLL) or polyethyleneimine (PEI)) followed by ii) the formation of the ternary complex by mixing polyplexes with neutral liposomes. The optimal polymer/DNA/lipid Nitrogen/Phosphate ratios and microfluidic operating parameters (volume ratio and total flow rate (TFR) were preliminarily defined to obtain lipopolyplexes with desired properties.
The optimized conditions led to obtain lipopolyplexes with a mean diameter of ~180 nm, a PDI < 0.2 and a slightly positive or neutral z-potential. FRET, SAXS and Cryo-EM analyses demonstrated the formation of a ternary complex in which the type of polymer dictated particles' structure. Lipopolyplexes displayed negligible toxicity in vitro, while promoting higher protein expression compared to the corresponding polyplexes and control 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) lipoplexes. Moreover, despite the three lipopolyplexes displaying similar uptake kinetics, those made of PEI showed the highest endosomolytic activity and promoted the most effective DNA transfection.
Overall, this study demonstrates that lipopolyplexes are a valid platform for pDNA delivery, with PEI lipopolyplexes being the best performing formulation, and that the type of cationic polymer plays a major role in the nanoparticles intercellular trafficking.
脂聚复合物(LPP),即阳离子聚合物、核酸和脂质体的混合三元复合物,是旨在克服第一代聚复合物和脂质复合物如体内毒性和转染效率低下等局限性的第二代非病毒载体。尽管其潜力已在体外和体内得到证实,但脂聚复合物作为基因递送系统仍未得到充分探索。在此,我们提供了脂聚复合物组成对其物理化学特性、细胞毒性和生物活性(即细胞摄取、内体逃逸和转染效率)影响的证据。
通过批量混合或两步微流控工艺制备脂聚复合物,该工艺包括:i)通过将编码绿色荧光蛋白的质粒DNA与一组阳离子聚合物(壳聚糖、聚-L-赖氨酸(PLL)或聚乙烯亚胺(PEI))复合形成聚复合物,然后ii)通过将聚复合物与中性脂质体混合形成三元复合物。初步确定了最佳聚合物/DNA/脂质氮/磷比率和微流控操作参数(体积比和总流速(TFR)),以获得具有所需特性的脂聚复合物。
优化条件导致获得平均直径约为180nm、PDI<0.2且z电位略正或中性的脂聚复合物。FRET、SAXS和冷冻电镜分析证明形成了三元复合物,其中聚合物的类型决定了颗粒的结构。脂聚复合物在体外显示出可忽略不计的毒性,同时与相应的聚复合物和对照1,2-二油酰基-3-三甲基铵丙烷(DOTAP)脂质复合物相比,促进了更高的蛋白质表达。此外,尽管三种脂聚复合物显示出相似的摄取动力学,但由PEI制成的脂聚复合物显示出最高的溶酶体活性并促进了最有效的DNA转染。
总体而言,本研究表明脂聚复合物是用于pDNA递送的有效平台,其中PEI脂聚复合物是性能最佳的制剂,并且阳离子聚合物的类型在纳米颗粒的细胞间运输中起主要作用。