Ahmed Enas, Farghali Ahmed A, Hmamm Mai F M
Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Science, Beni-Suef University 62511 Beni-Suef Egypt
Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University 62511 Beni-Suef Egypt.
RSC Adv. 2025 Aug 21;15(36):29777-29798. doi: 10.1039/d5ra03667d. eCollection 2025 Aug 18.
Nafion membranes, while widely used in fuel cells, suffer from high cost, limited methanol resistance, and thermal instability. This study addresses these limitations by developing a Cu-MOF@PVDF-PS nanofiber membrane with enhanced proton conductivity and structural durability. The proton exchange membrane was fabricated using electrospun nanofibers derived from a polymer blend of polyvinylidene fluoride (PVDF) and polystyrene (PS). The electrospinning technique facilitated the formation of numerous tiny ionic aggregates on the membrane surface, enhancing proton conductivity. To further improve conductivity, metal-organic frameworks (MOFs) were incorporated into the polymeric membranes, enabling tunable proton conduction. In this work, a Cu(ii)-based metal-organic framework (Cu-MOF) was incorporated into the PVDF-PS blend to produce hybrid membranes (Cu-MOF@PVDF-PS) with varying MOF content. The impact of different Cu-MOF loadings on the conductivity of the membrane composites was thoroughly examined. Notably, the Cu-MOF 50 wt%@PVDF-PS membrane demonstrated proton conductivity of up to 61.4 mS cm at 353 K. The improved proton conductivity of this hybrid membrane is attributed to contributing the formation of extended range conductive network through electrospinning, followed by hot pressing, and the synergistic effects among Cu-MOF and PVDF-PS. This research paves the way for further advancements in MOF/nanofiber composite membranes for proton-conducting applications.
尽管Nafion膜在燃料电池中被广泛使用,但它存在成本高、甲醇耐受性有限和热稳定性差等问题。本研究通过开发一种具有增强质子传导性和结构耐久性的Cu-MOF@PVDF-PS纳米纤维膜来解决这些局限性。质子交换膜是使用由聚偏氟乙烯(PVDF)和聚苯乙烯(PS)的聚合物共混物衍生的电纺纳米纤维制成的。静电纺丝技术促进了膜表面形成大量微小的离子聚集体,提高了质子传导性。为了进一步提高传导性,将金属有机框架(MOF)掺入聚合物膜中,实现了可调谐的质子传导。在这项工作中,将一种基于铜(II)的金属有机框架(Cu-MOF)掺入PVDF-PS共混物中,以制备具有不同MOF含量的混合膜(Cu-MOF@PVDF-PS)。全面研究了不同Cu-MOF负载量对膜复合材料传导性的影响。值得注意的是,Cu-MOF 50 wt%@PVDF-PS膜在353 K时表现出高达61.4 mS cm的质子传导性。这种混合膜质子传导性的提高归因于通过静电纺丝形成扩展范围的导电网络,随后进行热压,以及Cu-MOF与PVDF-PS之间的协同效应。这项研究为用于质子传导应用的MOF/纳米纤维复合膜的进一步发展铺平了道路。