文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肿瘤微环境特征增强肺腺癌预后预测:瘤内微生物群的影响

Tumor microenvironment signatures enhances lung adenocarcinoma prognosis prediction: Implication of intratumoral microbiota.

作者信息

Zhao Fei, Wang Lei, Du Dongjie, Zhao Heaven, Tian Geng, Li Yufeng, Liu Yankun, Wang Zhiwu, Liu Dasheng, Li Jingwu, Ji Lei, Zhao Hong

机构信息

School of Mathematical Sciences, Ocean University of China, Qingdao, 266100, China.

The authors contributed equally to this work.

出版信息

Microb Cell. 2025 Aug 11;12:182-194. doi: 10.15698/mic2025.08.855. eCollection 2025.


DOI:10.15698/mic2025.08.855
PMID:40860241
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12373402/
Abstract

The interaction between intratumoral microbiome and the tumor microenvironment (TME) has furthered our understanding of tumor ecology. Yet, the implications of their interaction for lung cancer management remain unclear. In the current work, we collected host transcriptome samples and matched intratumoral microbiome samples, as well as detailed clinical metadata from The Cancer Genome Atlas (TCGA) of 478 patients with lung adenocarcinoma (LUAD). Utilizing the multiomics integration approach, we comprehensively investigated the crosstalk between the TME and intratumoral microbiome in patients with LUAD. First, we developed a prognostic model based on the TME signatures (TMEindex) that clearly distinguished clinical, survival, and response to immunotherapy of patients with LUAD. Additionally, we found profound differences in intratumoral microbiota signatures, including alpha- and beta-diversity, among patients with different survival risks based on the TME signatures. In depth, we detected that genera and were strongly negatively and positively associated with patients' survival risk, respectively, suggesting their opposing roles in cancer progression. Moreover, we developed a model that fused intratumoral microbial abundance information with TME signatures, called intratumoral microbiome-modified TMEindex (IMTMEindex), leading in predicting patient overall survival at 1-, 3-, and 5-years. Future clinical profiling of the specific intratumoral microbes in the TME could improve prognosis, inform immunotherapy, and facilitate the development of novel therapeutics for LUAD.

摘要

肿瘤内微生物群与肿瘤微环境(TME)之间的相互作用加深了我们对肿瘤生态学的理解。然而,它们之间的相互作用对肺癌治疗的影响仍不清楚。在当前的研究中,我们收集了478例肺腺癌(LUAD)患者的宿主转录组样本、匹配的肿瘤内微生物群样本以及来自癌症基因组图谱(TCGA)的详细临床元数据。利用多组学整合方法,我们全面研究了LUAD患者TME与肿瘤内微生物群之间的相互作用。首先,我们基于TME特征(TMEindex)开发了一种预后模型,该模型能够清晰地区分LUAD患者的临床情况、生存率以及对免疫治疗的反应。此外,我们发现基于TME特征,不同生存风险的患者在肿瘤内微生物群特征方面存在显著差异,包括α-和β-多样性。深入研究发现,属 和 分别与患者的生存风险呈强烈的负相关和正相关,表明它们在癌症进展中具有相反的作用。此外,我们开发了一种将肿瘤内微生物丰度信息与TME特征融合的模型,称为肿瘤内微生物群修饰的TMEindex(IMTMEindex),在预测患者1年、3年和5年总生存率方面表现出色。未来对TME中特定肿瘤内微生物的临床分析可能会改善预后、为免疫治疗提供信息,并促进LUAD新型治疗方法的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e95/12373402/567da8617fe7/mic-12-182-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e95/12373402/9d4d49cce067/mic-12-182-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e95/12373402/6ef2f8b10bd7/mic-12-182-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e95/12373402/fe96da77063a/mic-12-182-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e95/12373402/1d77f1e9f15a/mic-12-182-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e95/12373402/bc8a6fc20bba/mic-12-182-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e95/12373402/567da8617fe7/mic-12-182-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e95/12373402/9d4d49cce067/mic-12-182-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e95/12373402/6ef2f8b10bd7/mic-12-182-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e95/12373402/fe96da77063a/mic-12-182-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e95/12373402/1d77f1e9f15a/mic-12-182-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e95/12373402/bc8a6fc20bba/mic-12-182-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e95/12373402/567da8617fe7/mic-12-182-g006.jpg

相似文献

[1]
Tumor microenvironment signatures enhances lung adenocarcinoma prognosis prediction: Implication of intratumoral microbiota.

Microb Cell. 2025-8-11

[2]
Interplay between tumor mutation burden and the tumor microenvironment predicts the prognosis of pan-cancer anti-PD-1/PD-L1 therapy.

Front Immunol. 2025-7-24

[3]
Integrative metagenomic, transcriptomic, and proteomic analysis reveal the microbiota-host interplay in early-stage lung adenocarcinoma among non-smokers.

J Transl Med. 2024-7-13

[4]
Bioinformatics analysis of BTK expression in lung adenocarcinoma: implications for immune infiltration, prognostic biomarkers, and therapeutic targeting.

3 Biotech. 2024-9

[5]
Identification of prognostic-related tumor microenvironment genes in lung adenocarcinoma and establishment of a prognostic prediction model.

Transl Lung Cancer Res. 2025-6-30

[6]
Predicting High-Risk Patients with Lung Adenocarcinoma: The Power of Plasma Cell-Related Genes.

Oncology. 2025

[7]
Integrated multi-omics analysis and machine learning identify G protein-coupled receptor-related signatures for diagnosis and clinical benefits in soft tissue sarcoma.

Front Immunol. 2025-7-21

[8]
Intratumoral neutrophil-to-lymphocyte ratio is mirrored by circulating neutrophil-to-lymphocyte ratio in non-small cell lung cancer.

J Immunother Cancer. 2025-6-24

[9]
Integrating computational pathology and multi-transcriptomics to characterize lung adenocarcinoma heterogeneity and prognostic modeling.

Int J Surg. 2025-8-1

[10]
Molecular subtypes of lung adenocarcinoma patients for prognosis and therapeutic response prediction with machine learning on 13 programmed cell death patterns.

J Cancer Res Clin Oncol. 2023-10

本文引用的文献

[1]
Intratumoural microbiota: a new frontier in cancer development and therapy.

Signal Transduct Target Ther. 2024-1-10

[2]
Risk factors analysis and survival prediction model establishment of patients with lung adenocarcinoma based on different pyroptosis-related gene subtypes.

Eur J Med Res. 2023-12-18

[3]
Leveraging circulating microbiome signatures to predict tumor immune microenvironment and prognosis of patients with non-small cell lung cancer.

J Transl Med. 2023-11-10

[4]
Pan-cancer analyses reveal the stratification of patient prognosis by viral composition in tumor tissues.

Comput Biol Med. 2023-12

[5]
Identification of a coagulation-related signature correlated with immune infiltration and their prognostic implications in lung adenocarcinoma.

Thorac Cancer. 2023-11

[6]
Research on Pachymaran to Ameliorate CsA-Induced Immunosuppressive Lung Injury by Regulating Microflora Metabolism.

Microorganisms. 2023-9-7

[7]
Intratumor microbiome derived glycolysis-lactate signatures depicts immune heterogeneity in lung adenocarcinoma by integration of microbiomic, transcriptomic, proteomic and single-cell data.

Front Microbiol. 2023-8-17

[8]
A meta-analysis of tissue microbial biomarkers for recurrence and metastasis in multiple cancer types.

J Med Microbiol. 2023-8

[9]
Comprehensive analysis of the lncRNAs-related immune gene signatures and their correlation with immunotherapy in lung adenocarcinoma.

Br J Cancer. 2023-10

[10]
Intratumoral Microbiota-Host Interactions Shape the Variability of Lung Adenocarcinoma and Lung Squamous Cell Carcinoma in Recurrence and Metastasis.

Microbiol Spectr. 2023-6-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索