Zhao Fei, Wang Lei, Du Dongjie, Zhao Heaven, Tian Geng, Li Yufeng, Liu Yankun, Wang Zhiwu, Liu Dasheng, Li Jingwu, Ji Lei, Zhao Hong
School of Mathematical Sciences, Ocean University of China, Qingdao, 266100, China.
The authors contributed equally to this work.
Microb Cell. 2025 Aug 11;12:182-194. doi: 10.15698/mic2025.08.855. eCollection 2025.
The interaction between intratumoral microbiome and the tumor microenvironment (TME) has furthered our understanding of tumor ecology. Yet, the implications of their interaction for lung cancer management remain unclear. In the current work, we collected host transcriptome samples and matched intratumoral microbiome samples, as well as detailed clinical metadata from The Cancer Genome Atlas (TCGA) of 478 patients with lung adenocarcinoma (LUAD). Utilizing the multiomics integration approach, we comprehensively investigated the crosstalk between the TME and intratumoral microbiome in patients with LUAD. First, we developed a prognostic model based on the TME signatures (TMEindex) that clearly distinguished clinical, survival, and response to immunotherapy of patients with LUAD. Additionally, we found profound differences in intratumoral microbiota signatures, including alpha- and beta-diversity, among patients with different survival risks based on the TME signatures. In depth, we detected that genera and were strongly negatively and positively associated with patients' survival risk, respectively, suggesting their opposing roles in cancer progression. Moreover, we developed a model that fused intratumoral microbial abundance information with TME signatures, called intratumoral microbiome-modified TMEindex (IMTMEindex), leading in predicting patient overall survival at 1-, 3-, and 5-years. Future clinical profiling of the specific intratumoral microbes in the TME could improve prognosis, inform immunotherapy, and facilitate the development of novel therapeutics for LUAD.
肿瘤内微生物群与肿瘤微环境(TME)之间的相互作用加深了我们对肿瘤生态学的理解。然而,它们之间的相互作用对肺癌治疗的影响仍不清楚。在当前的研究中,我们收集了478例肺腺癌(LUAD)患者的宿主转录组样本、匹配的肿瘤内微生物群样本以及来自癌症基因组图谱(TCGA)的详细临床元数据。利用多组学整合方法,我们全面研究了LUAD患者TME与肿瘤内微生物群之间的相互作用。首先,我们基于TME特征(TMEindex)开发了一种预后模型,该模型能够清晰地区分LUAD患者的临床情况、生存率以及对免疫治疗的反应。此外,我们发现基于TME特征,不同生存风险的患者在肿瘤内微生物群特征方面存在显著差异,包括α-和β-多样性。深入研究发现,属 和 分别与患者的生存风险呈强烈的负相关和正相关,表明它们在癌症进展中具有相反的作用。此外,我们开发了一种将肿瘤内微生物丰度信息与TME特征融合的模型,称为肿瘤内微生物群修饰的TMEindex(IMTMEindex),在预测患者1年、3年和5年总生存率方面表现出色。未来对TME中特定肿瘤内微生物的临床分析可能会改善预后、为免疫治疗提供信息,并促进LUAD新型治疗方法的开发。
Signal Transduct Target Ther. 2024-1-10