Suppr超能文献

MRI机器学习模型预测腰椎管狭窄症中的神经根沉降:一项前瞻性研究。

MRI machine learning model predicts nerve root sedimentation in lumbar stenosis: a prospective study.

作者信息

Wang Qing, Luo Xianping, Li Deng, Zhai Yi, Ying Caiyun

机构信息

Chongqing Hospital of PAP, Chongqing, China.

People's Hospital of Chongqing Liangjiang New Area, Chongqing, China.

出版信息

Front Neurol. 2025 Aug 8;16:1585973. doi: 10.3389/fneur.2025.1585973. eCollection 2025.

Abstract

OBJECTIVES

To analyze MRI characteristics of the nerve root sedimentation sign (SedSign) in lumbar spinal canal stenosis (LSS) and to establish a risk model predicting its occurrence.

METHODS

A total of 1,138 narrow layers were divided into SedSign-positive (426 layers) and SedSign-negative (712 layers) groups. Key data included spinal canal diameters, dural sac dimensions, ligamentum flavum (LF) and epidural fat (EF) thickness, SedSign presence, lumbar disc herniation (LDH), high-intensity zone (HIZ), and EF classification. Comparisons used t tests or Mann-Whitney U tests. Recursive feature elimination with cross-validation (RFECV) was used to select predictive features, and models were established via random forest (RF), K-nearest neighbors (KNN), and extreme gradient boosting (XGBoost) algorithms and evaluated in terms of precision, recall, average F1 score, accuracy, and AUC. The optimal model was subject to SHAP analysis to explain the risk factors.

RESULTS

LSS patients with the SedSign had a greater degree of narrowing and were more likely to have increased EF, LDH, LF hypertrophy (LFH), and HIZ and to be older than those without the SedSign. There was no difference between the two groups in terms of sex ( = 0.051). RFECV yielded eight features: age, sex, APDS, APDD, TDD, EF grade, LDH, and LFH. The RF model constructed using these features-designated as SedSign8-exhibited superior performance in predicting the risk of SedSign, with robust metrics across all evaluation dimensions: precision of 84.4%, recall of 73.6%, F1 score of 78.6%, accuracy of 83.6%, and an AUC of 0.901.

CONCLUSION

Older patients, along with a greater degree of stenosis and changes in the dural sac and surrounding tissue structures, were identified as the main pathophysiological basis for the occurrence of the SedSign in LSS.

摘要

目的

分析腰椎管狭窄症(LSS)中神经根沉降征(SedSign)的MRI特征,并建立预测其发生的风险模型。

方法

将总共1138个狭窄层面分为SedSign阳性组(426个层面)和SedSign阴性组(712个层面)。关键数据包括椎管直径、硬膜囊尺寸、黄韧带(LF)和硬膜外脂肪(EF)厚度、SedSign的存在情况、腰椎间盘突出症(LDH)、高强度区(HIZ)以及EF分级。比较采用t检验或曼-惠特尼U检验。使用带交叉验证的递归特征消除(RFECV)来选择预测特征,并通过随机森林(RF)、K近邻(KNN)和极端梯度提升(XGBoost)算法建立模型,并根据精度、召回率、平均F1分数、准确性和AUC进行评估。对最佳模型进行SHAP分析以解释危险因素。

结果

有SedSign的LSS患者狭窄程度更大,且比没有SedSign的患者更易出现EF增加、LDH、LF肥厚(LFH)和HIZ,年龄也更大。两组在性别方面无差异(P = 0.051)。RFECV产生了八个特征:年龄、性别、前后径脊髓矢状径差(APDS)、前后径硬膜囊矢状径差(APDD)、横径硬膜囊矢状径差(TDD)、EF分级、LDH和LFH。使用这些特征构建的RF模型(称为SedSign8)在预测SedSign风险方面表现出卓越性能,在所有评估维度上指标稳健:精度为84.4%,召回率为73.6%,F1分数为78.6%,准确性为83.6%,AUC为0.901。

结论

老年患者以及更严重的狭窄程度和硬膜囊及周围组织结构的改变被确定为LSS中SedSign发生的主要病理生理基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3bc/12370654/1bc06fec4263/fneur-16-1585973-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验