Suppr超能文献

伪自旋内禀磁性耦合:纳米电子学的一个新前沿。

PSe IMC: a new frontier in nanoelectronics.

作者信息

Jabeen Alia, Majid Abdul

机构信息

a, Department of Physics, University of Gujrat Gujrat Pakistan

出版信息

RSC Adv. 2025 Aug 12;15(35):28524-28537. doi: 10.1039/d5ra04194e. eCollection 2025 Aug 11.

Abstract

This study examines the fundamental electronic, structural and quantum transport properties of a novel inorganic molecular crystal (IMC), considering both the three-dimensional (3D) bulk and two-dimensional (2D) surfaces/slabs with (001) and (110) surface terminations. The structural properties and bonding analysis carried out using electronegativity differences, bond length analysis, and the Pauling formula reveal strong 3D anisotropy in the bonding of the structure, characterized by strong intramolecular bonding in the distinct molecular units and weak Van der Waals (vdW) interactions between them, confirming the IMC nature of the material. These results were also confirmed by interaction studies, periodic energy decomposition analysis (pEDA-NOCV). Electronic structure computation reveals that the bulk and slab-(110) exhibited semiconducting behavior with band gaps of ∼1.54 eV and 0.9 eV, respectively. However, the slab-(001) surface termination corresponds to a narrow band gap of ∼0.54 eV. Considering this key feature, the potential of slab-(001) as a nano-electronic device was investigated using the non-equilibrium Green's function (NEGF) strategy. Investigation of frontier orbitals, current-voltage (-) characteristics, and transmission spectra shows the promising field-effect transistor (FET) behavior of the slab-(001) indicating its potential for implementation in nano-scale electronic devices.

摘要

本研究考察了一种新型无机分子晶体(IMC)的基本电子、结构和量子输运性质,同时考虑了具有(001)和(110)表面终端的三维(3D)体相和二维(2D)表面/薄片。利用电负性差异、键长分析和鲍林公式进行的结构性质和键合分析揭示了该结构键合中强烈的3D各向异性,其特征是在不同分子单元中存在强分子内键合,而它们之间的范德华(vdW)相互作用较弱,证实了该材料的IMC性质。这些结果也通过相互作用研究、周期能量分解分析(pEDA-NOCV)得到了证实。电子结构计算表明,体相和薄片-(110)分别表现出半导体行为,带隙约为1.54 eV和0.9 eV。然而,薄片-(001)表面终端对应的带隙较窄,约为0.54 eV。考虑到这一关键特征,使用非平衡格林函数(NEGF)策略研究了薄片-(001)作为纳米电子器件的潜力。对前沿轨道、电流-电压(-)特性和透射光谱的研究表明,薄片-(001)具有有前景的场效应晶体管(FET)行为,表明其在纳米尺度电子器件中实现的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7b8/12376792/abf8cae39f91/d5ra04194e-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验