Velamala Bharath, Sagheb Hossein Pour Elham, Lin Michael, Fan Jungwei Wilfred
Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, 55905, United States.
Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55905, United States.
JAMIA Open. 2025 Aug 23;8(4):ooaf094. doi: 10.1093/jamiaopen/ooaf094. eCollection 2025 Aug.
To enable users with modest technical background to perform biomedical natural language processing (NLP).
We developed medspacyV using the Python graphical programming tkinter library, following the model-view-controller (MVC) design pattern. The interface wraps around a rule-based pipeline for sentence splitting, section segmentation, concept identification, and negation detection.
The primary window allows the user to configure the project and NLP rules, execute the pipeline, and save the outputs into a table. A separate annotation viewer window can be launched to inspect the immediate or previous NLP outputs.
We developed medspacyV with three rationales: controllability, explainability, and economy. The rule-based approach is sufficient for many NLP use cases.
The medspacyV program is publicly available at https://github.com/medspacy/medspacyV, targeting use by healthcare professionals and researchers in their NLP projects.
使具有适度技术背景的用户能够进行生物医学自然语言处理(NLP)。
我们使用Python图形化编程tkinter库,遵循模型-视图-控制器(MVC)设计模式开发了medspacyV。该界面围绕一个基于规则的管道,用于句子拆分、章节分割、概念识别和否定检测。
主窗口允许用户配置项目和NLP规则、执行管道并将输出保存到表格中。可以启动一个单独的注释查看器窗口来检查当前或之前的NLP输出。
我们开发medspacyV有三个理由:可控性、可解释性和经济性。基于规则的方法对于许多NLP用例来说已经足够。
medspacyV程序可在https://github.com/medspacy/medspacyV上公开获取,供医疗保健专业人员和研究人员在其NLP项目中使用。