Suppr超能文献

医学 spaCy:Python 中的新型临床文本处理工具包,助力临床应用。

Launching into clinical space with medspaCy: a new clinical text processing toolkit in Python.

机构信息

VA Salt Lake City Health Care System.

University of Utah, Salt Lake City, UT, USA.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:438-447. eCollection 2021.

Abstract

Despite impressive success of machine learning algorithms in clinical natural language processing (cNLP), rule-based approaches still have a prominent role. In this paper, we introduce medspaCy, an extensible, open-source cNLP library based on spaCy framework that allows flexible integration of rule-based and machine learning-based algorithms adapted to clinical text. MedspaCy includes a variety of components that meet common cNLP needs such as context analysis and mapping to standard terminologies. By utilizing spaCy's clear and easy-to-use conventions, medspaCy enables development of custom pipelines that integrate easily with other spaCy-based modules. Our toolkit includes several core components and facilitates rapid development of pipelines for clinical text.

摘要

尽管机器学习算法在临床自然语言处理 (cNLP) 中取得了令人印象深刻的成功,但基于规则的方法仍然具有重要作用。在本文中,我们介绍了 medspaCy,这是一个基于 spaCy 框架的可扩展、开源的 cNLP 库,它允许灵活集成针对临床文本的基于规则和基于机器学习的算法。medspaCy 包括各种满足常见 cNLP 需求的组件,例如上下文分析和到标准术语的映射。通过利用 spaCy 清晰易用的约定,medspaCy 使开发自定义管道变得更加容易,这些管道可以轻松地与其他基于 spaCy 的模块集成。我们的工具包包括几个核心组件,可促进临床文本的管道的快速开发。

相似文献

引用本文的文献

2
AI-Driven Injury Reporting in Pediatric Emergency Departments.儿科急诊科中由人工智能驱动的损伤报告
JAMA Netw Open. 2025 Jul 1;8(7):e2524154. doi: 10.1001/jamanetworkopen.2025.24154.

本文引用的文献

3
Clinical concept extraction: A methodology review.临床概念提取:方法学综述。
J Biomed Inform. 2020 Sep;109:103526. doi: 10.1016/j.jbi.2020.103526. Epub 2020 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验