Suppr超能文献

受黑翅鸢启发的压缩机初始设计优化的可解释强化学习

Explainable Reinforcement Learning for the Initial Design Optimization of Compressors Inspired by the Black-Winged Kite.

作者信息

Zhang Mingming, Miao Zhuang, Nan Xi, Ma Ning, Liu Ruoyang

机构信息

School of Mathematics Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China.

Aero Engine Academy of China, Beijing 101304, China.

出版信息

Biomimetics (Basel). 2025 Jul 29;10(8):497. doi: 10.3390/biomimetics10080497.

Abstract

Although artificial intelligence methods such as reinforcement learning (RL) show potential in optimizing the design of compressors, there are still two major challenges remaining: limited design variables and insufficient model explainability. For the initial design of compressors, this paper proposes a technical approach that incorporates deep reinforcement learning and decision tree distillation to enhance both the optimization capability and explainability. First, a pre-selection platform for the initial design scheme of the compressors is constructed based on the Deep Deterministic Policy Gradient (DDPG) algorithm. The optimization space is significantly enlarged by expanding the co-design of 25 key variables (e.g., the inlet airflow angle, the reaction, the load coefficient, etc.). Then, the initial design of six-stage axial compressors is successfully completed, with the axial efficiency increasing to 84.65% at the design speed and the surge margin extending to 10.75%. The design scheme is closer to the actual needs of engineering. Secondly, Shapley Additive Explanations (SHAP) analysis is utilized to reveal the influence of the mechanism of the key design parameters on the performance of the compressors in order to enhance the model explainability. Finally, the decision tree inspired by the black-winged kite (BKA) algorithm takes the interpretable design rules and transforms the data-driven intelligent optimization into explicit engineering experience. Through experimental validation, this method significantly improves the transparency of the design process while maintaining the high performance of the DDPG algorithm. The extracted design rules not only have clear physical meanings but also can effectively guide the initial design of the compressors, providing a new idea with both optimization capability and explainability for its intelligent design.

摘要

尽管诸如强化学习(RL)等人工智能方法在优化压缩机设计方面显示出潜力,但仍存在两个主要挑战:设计变量有限和模型可解释性不足。针对压缩机的初始设计,本文提出了一种结合深度强化学习和决策树蒸馏的技术方法,以提高优化能力和可解释性。首先,基于深度确定性策略梯度(DDPG)算法构建了压缩机初始设计方案的预选平台。通过扩展25个关键变量(如进口气流角、反动度、载荷系数等)的协同设计,显著扩大了优化空间。然后,成功完成了六级轴流压缩机的初始设计,在设计转速下轴流效率提高到84.65%,喘振裕度扩展到10.75%。设计方案更贴近工程实际需求。其次,利用Shapley值加法解释(SHAP)分析来揭示关键设计参数的机理对压缩机性能的影响,以提高模型的可解释性。最后,受黑翅鸢(BKA)算法启发的决策树提取可解释的设计规则,将数据驱动的智能优化转化为明确的工程经验。通过实验验证,该方法在保持DDPG算法高性能的同时,显著提高了设计过程的透明度。提取的设计规则不仅具有明确的物理意义,还能有效地指导压缩机的初始设计,为其智能设计提供了一种兼具优化能力和可解释性的新思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bed/12383775/6667fcb6fba5/biomimetics-10-00497-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验