Department of Computer Science, Aalto University, Espoo, Finland.
VTT Technical Research Centre of Finland Ltd, Espoo, Finland.
PLoS Comput Biol. 2022 Jun 3;18(6):e1010177. doi: 10.1371/journal.pcbi.1010177. eCollection 2022 Jun.
Engineered microbial cells present a sustainable alternative to fossil-based synthesis of chemicals and fuels. Cellular synthesis routes are readily assembled and introduced into microbial strains using state-of-the-art synthetic biology tools. However, the optimization of the strains required to reach industrially feasible production levels is far less efficient. It typically relies on trial-and-error leading into high uncertainty in total duration and cost. New techniques that can cope with the complexity and limited mechanistic knowledge of the cellular regulation are called for guiding the strain optimization. In this paper, we put forward a multi-agent reinforcement learning (MARL) approach that learns from experiments to tune the metabolic enzyme levels so that the production is improved. Our method is model-free and does not assume prior knowledge of the microbe's metabolic network or its regulation. The multi-agent approach is well-suited to make use of parallel experiments such as multi-well plates commonly used for screening microbial strains. We demonstrate the method's capabilities using the genome-scale kinetic model of Escherichia coli, k-ecoli457, as a surrogate for an in vivo cell behaviour in cultivation experiments. We investigate the method's performance relevant for practical applicability in strain engineering i.e. the speed of convergence towards the optimum response, noise tolerance, and the statistical stability of the solutions found. We further evaluate the proposed MARL approach in improving L-tryptophan production by yeast Saccharomyces cerevisiae, using publicly available experimental data on the performance of a combinatorial strain library. Overall, our results show that multi-agent reinforcement learning is a promising approach for guiding the strain optimization beyond mechanistic knowledge, with the goal of faster and more reliably obtaining industrially attractive production levels.
工程化微生物细胞为基于化石的化学品和燃料合成提供了一种可持续的替代方案。使用最先进的合成生物学工具,细胞合成途径可以很容易地组装并引入微生物菌株。然而,达到工业可行的生产水平所需的菌株优化效率要低得多。它通常依赖于反复试验,导致总持续时间和成本的高度不确定性。需要新的技术来应对细胞调控的复杂性和有限的机械知识,以指导菌株优化。在本文中,我们提出了一种多代理强化学习(MARL)方法,该方法通过从实验中学习来调整代谢酶水平,从而提高生产效率。我们的方法是无模型的,不假设微生物代谢网络或其调控的先验知识。多代理方法非常适合利用平行实验,例如常用于筛选微生物菌株的多孔板。我们使用大肠杆菌的基因组规模动力学模型 k-ecoli457 作为体内细胞行为的替代物,在培养实验中证明了该方法的能力。我们研究了该方法在菌株工程中的实际应用中的性能,例如向最优响应的收敛速度、噪声容忍度和找到的解决方案的统计稳定性。我们还使用酵母酿酒酵母的组合菌株文库的性能的公开实验数据,进一步评估了所提出的 MARL 方法在提高 L-色氨酸生产中的应用。总的来说,我们的结果表明,多代理强化学习是一种有前途的方法,可以在超越机械知识的情况下指导菌株优化,以更快、更可靠地获得工业上有吸引力的生产水平。