Zhou Zijie, Huang Yitao, Sun Jiyu
Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
Biomimetics (Basel). 2025 Aug 19;10(8):543. doi: 10.3390/biomimetics10080543.
This paper presents a bionic extended Kalman filter (EKF) state estimation algorithm for agricultural planters, inspired by the bionic mechanism of migratory birds navigating in complex environments, where migratory birds achieve precise localization behaviors by fusing multi-sensory information (e.g., geomagnetic field, visual landmarks, and somatosensory balance). The algorithm mimics the migratory bird's ability to integrate multimodal information by fusing laser SLAM, inertial measurement unit (IMU), and GPS data to estimate the position, velocity, and attitude of the planter in real time. Adopting a nonlinear processing approach, the EKF effectively handles nonlinear dynamic characteristics in complex terrain, similar to the adaptive response of a biological nervous system to environmental perturbations. The algorithm demonstrates bio-inspired robustness through the derivation of the nonlinear dynamic teaching model and measurement model and is able to provide high-precision state estimation in complex environments such as mountainous or hilly terrain. Simulation results show that the algorithm significantly improves the navigation accuracy of the planter in unstructured environments. A new method of bio-inspired adaptive state estimation is provided.
本文提出了一种用于农业播种机的仿生扩展卡尔曼滤波器(EKF)状态估计算法,其灵感来源于候鸟在复杂环境中导航的仿生机制,其中候鸟通过融合多感官信息(如地磁场、视觉地标和体感平衡)实现精确的定位行为。该算法通过融合激光同步定位与地图构建(SLAM)、惯性测量单元(IMU)和全球定位系统(GPS)数据来模仿候鸟整合多模态信息的能力,以实时估计播种机的位置、速度和姿态。采用非线性处理方法,EKF有效地处理复杂地形中的非线性动态特性,类似于生物神经系统对环境扰动的自适应响应。该算法通过推导非线性动态教学模型和测量模型展示了受生物启发的鲁棒性,并且能够在山区或丘陵地带等复杂环境中提供高精度的状态估计。仿真结果表明,该算法显著提高了播种机在非结构化环境中的导航精度。提供了一种受生物启发的自适应状态估计新方法。