Buckley Anthony M, Zaidan Sarah, Sweet Michael G, Ewin Duncan J, Ratliff Juanita G, Alkazemi Aliyah, Davis Birch William, McAmis Ashley M, Neilson Andrew P
Microbiome and Nutritional Science Group, Faculty of Food Science and Nutrition, School of Food Science, University of Leeds, Leeds LS2 9JT, UK.
Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
Metabolites. 2025 Aug 16;15(8):552. doi: 10.3390/metabo15080552.
BACKGROUND/OBJECTIVES: Gut microbial metabolism of choline and related quaternary amines to trimethylamine (TMA) is the first step in the production of trimethylamine N-oxide (TMAO), a circulating metabolite that contributes to the development of atherosclerosis and other forms of cardiovascular disease (CVD). No data exist on regional differences in TMA production within the colon due to difficulties studying gut regions in vivo. A better understanding of TMA production by gut microbiota is needed to develop strategies to limit TMA production in the gut and TMAO levels in circulation with the goal of reducing CVD risk.
We employed our novel three-compartment MiGut in vitro model, which establishes three distinct microbial ecologies mimicking the proximal, mid, and distal colon, to study conversion of choline to TMA by human gut microbiota using isotopically labelled substrate.
Choline-d was almost completely converted to TMA-d in vessels 2-3 (mimicking the mid and distal colon) within 6-8 h, but little conversion occurred in vessel 1 (mimicking the proximal colon). Abundance of , part of the gene cluster responsible for choline conversion to TMA, was highest in vessel 1 vs. 2-3, suggesting that its expression or activity may be suppressed in the proximal colon. Another possibility is that the viability/activity of bacteria expressing could be suppressed in the same region.
This novel finding suggests that while bacteria capable of converting choline to TMA exist throughout the colon, their activity may be different in distinct colon regions. The regional specificity of TMA production, if confirmed in vivo, has implications for both basic microbial ecology related to CVD and the development of strategies to control TMA and TMAO production, with the goal of lowering CVD risk. These findings warrant further study in vitro and in vivo.
背景/目的:胆碱及相关季胺经肠道微生物代谢生成三甲胺(TMA)是生成氧化三甲胺(TMAO)的第一步,TMAO是一种循环代谢物,可促进动脉粥样硬化和其他形式的心血管疾病(CVD)的发展。由于在体内研究肠道区域存在困难,目前尚无关于结肠内TMA生成区域差异的数据。为了制定策略限制肠道内TMA生成及循环中TMAO水平,以降低CVD风险,需要更好地了解肠道微生物群产生TMA的情况。
我们采用了新型三室MiGut体外模型,该模型建立了三种不同的微生物生态,模拟近端、中段和远端结肠,使用同位素标记底物研究人类肠道微生物群将胆碱转化为TMA的过程。
在6-8小时内,胆碱-d在2-3号容器(模拟中段和远端结肠)中几乎完全转化为TMA-d,但在1号容器(模拟近端结肠)中转化很少。负责将胆碱转化为TMA的基因簇的一部分,在1号容器中的丰度高于2-3号容器,这表明其表达或活性在近端结肠中可能受到抑制。另一种可能性是,表达该基因的细菌的活力/活性在同一区域可能受到抑制。
这一新发现表明,虽然整个结肠中都存在能够将胆碱转化为TMA的细菌,但其活性在不同的结肠区域可能有所不同。TMA生成的区域特异性如果在体内得到证实,将对与CVD相关的基础微生物生态学以及控制TMA和TMAO生成的策略的制定产生影响,目标是降低CVD风险。这些发现值得在体外和体内进一步研究。