Suppr超能文献

对话:一项基于生成式人工智能的模拟前后研究,通过虚拟2型糖尿病场景增强医学生的诊断沟通能力。

DIALOGUE: A Generative AI-Based Pre-Post Simulation Study to Enhance Diagnostic Communication in Medical Students Through Virtual Type 2 Diabetes Scenarios.

作者信息

Suárez-García Ricardo Xopan, Chavez-Castañeda Quetzal, Orrico-Pérez Rodrigo, Valencia-Marin Sebastián, Castañeda-Ramírez Ari Evelyn, Quiñones-Lara Efrén, Ramos-Cortés Claudio Adrián, Gaytán-Gómez Areli Marlene, Cortés-Rodríguez Jonathan, Jarquín-Ramírez Jazel, Aguilar-Marchand Nallely Guadalupe, Valdés-Hernández Graciela, Campos-Martínez Tomás Eduardo, Vilches-Flores Alonso, Leon-Cabrera Sonia, Méndez-Cruz Adolfo René, Jay-Jímenez Brenda Ofelia, Saldívar-Cerón Héctor Iván

机构信息

Unidad de Remisión de Diabetes Mellitus (URDM), Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico.

Carrera de Médico Cirujano, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico.

出版信息

Eur J Investig Health Psychol Educ. 2025 Aug 7;15(8):152. doi: 10.3390/ejihpe15080152.

Abstract

DIALOGUE (DIagnostic AI Learning through Objective Guided User Experience) is a generative artificial intelligence (GenAI)-based training program designed to enhance diagnostic communication skills in medical students. In this single-arm pre-post study, we evaluated whether DIALOGUE could improve students' ability to disclose a type 2 diabetes mellitus (T2DM) diagnosis with clarity, structure, and empathy. Thirty clinical-phase students completed two pre-test virtual encounters with an AI-simulated patient (ChatGPT, GPT-4o), scored by blinded raters using an eight-domain rubric. Participants then engaged in ten asynchronous GenAI scenarios with automated natural-language feedback. Seven days later, they completed two post-test consultations with human standardized patients, again evaluated with the same rubric. Mean total performance increased by 36.7 points (95% CI: 31.4-42.1; < 0.001), and the proportion of high-performing students rose from 0% to 70%. Gains were significant across all domains, most notably in opening the encounter, closure, and diabetes specific explanation. Multiple regression showed that lower baseline empathy (β = -0.41, = 0.005) and higher digital self-efficacy (β = 0.35, = 0.016) independently predicted greater improvement; gender had only a marginal effect. Cluster analysis revealed three learner profiles, with the highest-gain group characterized by low empathy and high digital self-efficacy. Inter-rater reliability was excellent (ICC ≈ 0.90). These findings provide empirical evidence that GenAI-mediated training can meaningfully enhance diagnostic communication and may serve as a scalable, individualized adjunct to conventional medical education.

摘要

DIALOGUE(通过客观引导的用户体验进行诊断性人工智能学习)是一个基于生成式人工智能(GenAI)的培训项目,旨在提高医学生的诊断沟通技巧。在这项单组前后对照研究中,我们评估了DIALOGUE是否能提高学生清晰、有条理且富有同理心披露2型糖尿病(T2DM)诊断的能力。30名临床阶段的学生与人工智能模拟患者(ChatGPT、GPT - 4o)完成了两次预测试虚拟问诊,由不知情的评分者使用八维度评分量表进行评分。参与者随后参与了十个带有自动自然语言反馈的异步GenAI场景。七天后,他们与人类标准化患者完成了两次后测试问诊,同样使用相同的评分量表进行评估。平均总表现提高了36.7分(95%置信区间:31.4 - 42.1;<0.001),表现优秀的学生比例从0%升至70%。所有领域的进步都很显著,在问诊开场、结束以及糖尿病特定解释方面尤为明显。多元回归显示,较低的基线同理心(β = -0.41, = 0.005)和较高的数字自我效能感(β = 0.35, = 0.016)独立预测了更大的进步;性别仅有微小影响。聚类分析揭示了三种学习者类型,进步最大的一组特点是同理心低且数字自我效能感高。评分者间信度极佳(组内相关系数ICC≈0.90)。这些发现提供了实证证据,表明GenAI介导的培训可以切实提高诊断沟通能力,并且可以作为传统医学教育的一种可扩展的、个性化辅助手段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a6/12385505/43a22a5f3654/ejihpe-15-00152-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验