Suppr超能文献

使用经超声心动图得出的速度时间积分比值与应用于心电图的人工智能相结合,对经导管二尖瓣缘对缘修复术后进行预后评估。

Prognostication Following Transcatheter Edge-to-Edge Mitral Valve Repair Using Combined Echocardiography-Derived Velocity Time Integral Ratio and Artificial Intelligence Applied to Electrocardiogram.

作者信息

Bismee Nadera N, Scalia Isabel G, Abbas Mohammed Tiseer, Farina Juan M, Pereyra Pietri Milagros, Awad Kamal, Ali Nima Baba, Javadi Niloofar, Esfahani Sogol Attaripour, Sheashaa Hesham, Ibrahim Omar H, Abdelfattah Fatmaelzahraa E, Fortuin F David, Lester Steven J, Sweeney John P, Ayoub Chadi, Arsanjani Reza

机构信息

Department of Cardiovascular Diseases, Mayo Clinic, Phoenix, AZ 85054, USA.

出版信息

J Pers Med. 2025 Aug 13;15(8):371. doi: 10.3390/jpm15080371.

Abstract

: Mitral valve transcatheter edge-to-edge repair (M-TEER) has emerged as a minimally invasive option for high-risk surgical candidates with severe and symptomatic mitral regurgitation (MR), but post-procedure residual mitral valve (MV) dysfunction remains a significant concern. This study evaluates the clinical utility of combining artificial intelligence applied to electrocardiograms (ECG-AI) for diastolic dysfunction (DD) grading and the echocardiography-derived velocity time integral of the MV and left ventricular outflow tract ratio (VTI/) in predicting prognosis in patients post-M-TEER. : A retrospective analysis of patients who underwent M-TEER between 2014 and 2021 was conducted. Patients were categorized based on VTI and ECG-AI scores into three groups: both normal parameters, either abnormal parameter, or both abnormal parameters to compare outcomes (mortality, major adverse cardiovascular events [MACE], and the need for subsequent MV reintervention) using Kaplan-Meier analysis, multivariable Cox regression models, and net reclassification improvement. : Overall, 250 patients were included; the median age was 79.5 (IQR: 73.1, 84.6) and 66.4% were male. The combined abnormal VTI (≥2.5) and ECG-AI score for DD (>1) was associated with higher risk of one-year mortality (adjusted HR: 4.56 [1.04-19.89], = 0.044) and MACE (adjusted HR: 3.72 [1.09-12.72], = 0.037) compared to patients with both normal parameters. : This study highlights the potential additive value of integrating VTI and ECG-AI scores as a prognostic tool for a personalized approach to the post-operative evaluation and risk stratification in M-TEER patients.

摘要

二尖瓣经导管缘对缘修复术(M-TEER)已成为患有严重症状性二尖瓣反流(MR)的高风险手术候选者的一种微创选择,但术后二尖瓣(MV)功能障碍仍然是一个重大问题。本研究评估了将人工智能应用于心电图(ECG-AI)进行舒张功能障碍(DD)分级以及超声心动图得出的MV与左心室流出道速度时间积分比值(VTI/)在预测M-TEER术后患者预后方面的临床效用。

对2014年至2021年间接受M-TEER的患者进行了回顾性分析。根据VTI和ECG-AI评分将患者分为三组:两个参数均正常、任一参数异常或两个参数均异常,使用Kaplan-Meier分析、多变量Cox回归模型和净重新分类改善来比较结果(死亡率、主要不良心血管事件[MACE]以及后续MV再次干预的必要性)。

总体而言,纳入了250例患者;中位年龄为79.5岁(四分位间距:73.1,84.6),男性占66.4%。与两个参数均正常的患者相比,VTI异常(≥2.5)和DD的ECG-AI评分(>1)联合出现与一年死亡率(校正后HR:4.56[1.04 - 19.89],P = 0.044)和MACE(校正后HR:3.72[1.09 - 12.72],P = 0.037)的较高风险相关。

本研究强调了将VTI和ECG-AI评分整合作为一种预后工具的潜在附加价值,用于对M-TEER患者进行个性化的术后评估和风险分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ad9/12387676/6be031befaab/jpm-15-00371-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验