Suppr超能文献

基于宏基因组分析检测引起番荔枝拟盘多毛孢叶枯病的新种

Detection of sp. nov., the Causal Agent of Pestalotiopsis Leaf Blight on Based on Metagenomic Analysis.

作者信息

Cho Sung-Eun, Park Ki Hyeong, Shin Keumchul, Lee Dong-Hyeon

机构信息

Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea.

Forest Entomology and Pathology Division, National Institute of Forest Science, Seoul 02455, Republic of Korea.

出版信息

J Fungi (Basel). 2025 Jul 25;11(8):553. doi: 10.3390/jof11080553.

Abstract

Tree diseases affecting have emerged as a significant threat to the health and longevity of this ornamental tree, particularly in countries where this tree species is widely distributed and cultivated. Among these, spp. have been frequently reported and are considered one of the most impactful fungal pathogens, causing leaf blight or leaf spot, in multiple countries. Understanding the etiology and distribution of these diseases is essential for effective management and conservation of populations. The traditional methods based on pathogen isolation and pure culture cultivation for diagnosis of tree diseases are labor intensive and time-consuming. In addition, the frequent coexistence of the major pathogens with other endophytes within a single tree, coupled with inconsistent symptom expression and the occurrence of pathogens in asymptomatic hosts, further complicates disease diagnosis. These challenges highlight the urgent need to develop more rapid, accurate, and efficient diagnostic or monitoring tools to improve disease monitoring and management on trees, including . To address these challenges, we applied a metagenomic approach to screen fungal communities within trees. This method enabled comprehensive detection and characterization of fungal taxa present in symptomatic and asymptomatic tissues. By analyzing the correlation between fungal dominance and symptom expression, we identified key pathogenic taxa associated with disease manifestation. To validate the metagenomic approach, we employed a combined strategy integrating metagenomic screening and traditional fungal isolation to monitor foliar diseases in The correlation between dominant taxa and symptom expression was confirmed. Simultaneously, traditional isolation enabled the identification of a novel species, as the causal agent of leaf spot disease on . In addition to confirming previously known pathogens, our study led to the discovery and preliminary characterization of a novel fungal taxon with pathogenic potential. Our findings provide critical insights into the fungal community of and lay the groundwork for developing improved, rapid diagnostic tools for effective disease monitoring and management of tree diseases.

摘要

影响[具体树种]的树木病害已成为对这种观赏树的健康和寿命的重大威胁,特别是在该树种广泛分布和种植的国家。其中,[某种真菌属]在多个国家频繁被报道,被认为是最具影响力的真菌病原体之一,会引发叶枯病或叶斑病。了解这些病害的病因和分布对于有效管理和保护[具体树种]种群至关重要。基于病原体分离和纯培养的传统树木病害诊断方法 labor intensive 且耗时。此外,在单株[具体树种]中主要病原体与其他内生菌经常共存,再加上症状表现不一致以及病原体在无症状宿主中的出现,进一步使病害诊断复杂化。这些挑战凸显了迫切需要开发更快速、准确和高效的诊断或监测工具,以改善对包括[具体树种]在内的树木病害的监测和管理。为应对这些挑战,我们应用宏基因组学方法来筛选[具体树种]内的真菌群落。该方法能够全面检测和表征有症状和无症状组织中存在的真菌分类群。通过分析真菌优势度与症状表现之间的相关性,我们确定了与病害表现相关的关键致病分类群。为验证宏基因组学方法,我们采用了一种结合宏基因组筛选和传统真菌分离的联合策略来监测[具体树种]中的叶部病害。优势分类群与症状表现之间的相关性得到了证实。同时,传统分离鉴定出一种新物种[具体物种名]作为[具体树种]叶斑病的病原体。除了确认先前已知的病原体外,我们的研究还发现并初步表征了一个具有致病潜力的新型真菌分类群。我们的研究结果为[具体树种]的真菌群落提供了关键见解,并为开发改进的、快速的诊断工具以有效监测和管理树木病害奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93dd/12387949/7fb72337ae86/jof-11-00553-g001.jpg

相似文献

2
First Report of causing leaf spot on in China.
Plant Dis. 2025 Jun 27. doi: 10.1094/PDIS-05-25-0972-PDN.
6
Pest categorisation of .
EFSA J. 2023 Dec 21;21(12):e8493. doi: 10.2903/j.efsa.2023.8493. eCollection 2023 Dec.
10
Pest categorisation of .
EFSA J. 2023 Dec 19;21(12):e8494. doi: 10.2903/j.efsa.2023.8494. eCollection 2023 Dec.

本文引用的文献

1
Morphological and phylogenetic analyses reveal eight novel species of (Sporocadaceae, Amphisphaeriales) from southern China.
MycoKeys. 2024 Oct 9;109:207-238. doi: 10.3897/mycokeys.109.131000. eCollection 2024.
3
: A phytochemical perspective and current applications facing its industrial exploitation.
Food Chem X. 2022 Feb 17;13:100258. doi: 10.1016/j.fochx.2022.100258. eCollection 2022 Mar 30.
4
Technological Advances in Phytopathogen Detection and Metagenome Profiling Techniques.
Curr Microbiol. 2020 Apr;77(4):675-681. doi: 10.1007/s00284-020-01881-z. Epub 2020 Jan 20.
5
Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.
Nat Biotechnol. 2019 Aug;37(8):852-857. doi: 10.1038/s41587-019-0209-9.
8
DADA2: High-resolution sample inference from Illumina amplicon data.
Nat Methods. 2016 Jul;13(7):581-3. doi: 10.1038/nmeth.3869. Epub 2016 May 23.
9
MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.
Mol Biol Evol. 2016 Jul;33(7):1870-4. doi: 10.1093/molbev/msw054. Epub 2016 Mar 22.
10
Pestalotiopsis revisited.
Stud Mycol. 2014 Sep;79:121-86. doi: 10.1016/j.simyco.2014.09.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验