Ezeogu Nkechi, Mikulášek Petr, Onu Chijioke Elijah, Anike Obinna, Cuhorka Jiří
Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
Department of Chemical Engineering, Nnamdi Azikiwe University, Awka 5025, Nigeria.
Membranes (Basel). 2025 Jul 24;15(8):222. doi: 10.3390/membranes15080222.
The integration of computational intelligence techniques into pharmaceutical wastewater treatment offers promising opportunities to improve process efficiency and minimize operational costs. This study compares the predictive capabilities of Response Surface Methodology (RSM) and Artificial Neural Network (ANN) models in forecasting the rejection efficiencies of caffeine and paracetamol using AFC 40 and AFC 80 nanofiltration (NF) membranes. Experiments were conducted under varying operating conditions, including transmembrane pressure, feed concentration, and flow rate. The predictive performance of both models was evaluated using statistical metrics such as the Coefficient of Determination (R), Root Mean Square Error (RMSE), Marquardt's Percentage Squared Error Deviation (MPSED), Hybrid fractional error function (HYBRID), and Average Absolute Deviation (AAD). Both models demonstrated strong predictive accuracy, with R values of 0.9867 and 0.9832 for RSM and ANN, respectively, in AFC 40 membranes, and 0.9769 and 0.9922 in AFC 80 membranes. While both approaches closely matched the experimental results, the ANN model consistently yielded lower error values and higher R values, indicating superior predictive performance. These findings support the application of ANNs as a robust modelling tool in optimizing NF membrane processes for pharmaceutical removal.
将计算智能技术集成到制药废水处理中为提高工艺效率和降低运营成本提供了广阔的机会。本研究比较了响应面法(RSM)和人工神经网络(ANN)模型在预测使用AFC 40和AFC 80纳滤(NF)膜去除咖啡因和对乙酰氨基酚的效率方面的预测能力。实验在不同的操作条件下进行,包括跨膜压力、进料浓度和流速。使用诸如决定系数(R)、均方根误差(RMSE)、马夸特百分比平方误差偏差(MPSED)、混合分数误差函数(HYBRID)和平均绝对偏差(AAD)等统计指标评估了两种模型的预测性能。两种模型均显示出很强的预测准确性,在AFC 40膜中,RSM和ANN的R值分别为0.9867和0.9832,在AFC 80膜中分别为0.9769和0.9922。虽然两种方法都与实验结果非常吻合,但ANN模型始终产生较低的误差值和较高的R值,表明其预测性能更优。这些发现支持将人工神经网络作为一种强大的建模工具应用于优化去除药物的纳滤膜工艺。