Suppr超能文献

通过高熵设计提高BaSrCoFeO的氧渗透性与稳定性之间的平衡

Improving Balance Between Oxygen Permeability and Stability of BaSrCoFeO Through High-Entropy Design.

作者信息

Zhu Yongfan, Wu Meng, Zhang Guangru, Liu Zhengkun, Liu Gongping

机构信息

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China.

Nanjing Tech University Suzhou Future Membrane Technology Innovation Center, Suzhou 215300, China.

出版信息

Membranes (Basel). 2025 Aug 1;15(8):232. doi: 10.3390/membranes15080232.

Abstract

Currently, the trade-off between oxygen permeation flux and structural stability in conventional perovskite oxides restricts the practical application of oxygen permeable membranes. In this study, a high-entropy design was applied to the B-site of BSCF matrix materials, resulting in the successful synthesis of a high-entropy perovskite, BaSrCoFeTaNiZrO. The crystal structure, microstructure, and elemental composition of the material were systematically characterized and analyzed. Theoretical analysis and experimental characterization confirm that the material exhibits a stable single-phase high-entropy perovskite oxide structure. Under He as the sweep gas, the membrane achieved an oxygen permeation flux of 1.28 mL·cm·min and operated stably for over 100 h (1 mm thick, 900 °C). In a 20% CO/He atmosphere, the flux remained above 0.92 mL·cm·min for over 100 h, demonstrating good CO tolerance. Notably, when the sweep gas is returned to the pure He atmosphere, the oxygen permeation flux fully recovers to 1.28 mL·cm·min, with no evidence of leakage. These findings indicate that the proposed B-site doping strategy can break the trade-off between oxygen permeability and structural stability in conventional perovskite membranes. This advancement supports the industrialization of oxygen permeable membranes and offers valuable theoretical guidance for the design of high-performance perovskite materials.

摘要

目前,传统钙钛矿氧化物中氧渗透通量与结构稳定性之间的权衡限制了氧渗透膜的实际应用。在本研究中,将高熵设计应用于BSCF基体材料的B位,成功合成了一种高熵钙钛矿BaSrCoFeTaNiZrO。对该材料的晶体结构、微观结构和元素组成进行了系统的表征和分析。理论分析和实验表征证实,该材料呈现出稳定的单相高熵钙钛矿氧化物结构。在氦气作为吹扫气的条件下,该膜实现了1.28 mL·cm·min的氧渗透通量,并在100 h以上保持稳定运行(膜厚1 mm,温度900℃)。在20% CO/He气氛中,通量在100 h以上保持在0.92 mL·cm·min以上,显示出良好的CO耐受性。值得注意的是,当吹扫气恢复为纯氦气气氛时,氧渗透通量完全恢复到1.28 mL·cm·min,且无泄漏迹象。这些发现表明,所提出的B位掺杂策略可以打破传统钙钛矿膜中氧渗透性与结构稳定性之间的权衡。这一进展为氧渗透膜的工业化提供了支持,并为高性能钙钛矿材料的设计提供了有价值的理论指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20e9/12388480/a73665652fd3/membranes-15-00232-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验