Suppr超能文献

基于BaSrCoFeO材料的抗一氧化碳高熵钙钛矿的设计

Design of CO-Resistant High-Entropy Perovskites Based on BaSrCoFeO Materials.

作者信息

Zhu Yongfan, Liu Jia, Liu Zhengkun, Liu Gongping, Jin Wanqin

机构信息

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China.

出版信息

Materials (Basel). 2024 Sep 23;17(18):4672. doi: 10.3390/ma17184672.

Abstract

High-entropy perovskite materials (HEPMs), characterized by their multi-element composition and highly disordered structure, can incorporate multiple rare earth elements at the A-site, producing perovskites with enhanced CO resistance, making them stay high performance and structurally stable in the CO atmosphere. However, this modification may result in reduced oxygen permeability. In this study, we investigated LaPrNdBaSrCoFeO (LM) high-entropy perovskite materials, focusing on enhancing their oxygen permeability in both air and CO atmospheres through strategic design modifications at the B-sites and A/B-sites. We prepared Ni-substituted LaPrNdBaSrCoFeNiO (LMN) HEPMs by introducing Ni elements at the B-site, and further innovatively introduced A-site defects to prepare LaPrNdBaSrCoFeNiO (LMN) materials. In a pure CO atmosphere, the oxygen permeation flux of the LMN membrane can reach 0.29 mL·cm·min. Notably, the LMN membrane maintained a good perovskite structure after stability tests extending up to 120 h under 20% CO/80% He atmosphere. These findings suggest that A-site-defect high-entropy perovskites hold great promise for applications in CO capture, storage, and utilization.

摘要

高熵钙钛矿材料(HEPMs)具有多元素组成和高度无序的结构,能够在A位掺入多种稀土元素,从而制备出具有增强抗CO性能的钙钛矿,使其在CO气氛中保持高性能和结构稳定性。然而,这种改性可能会导致氧渗透率降低。在本研究中,我们研究了LaPrNdBaSrCoFeO(LM)高熵钙钛矿材料,重点是通过在B位和A/B位进行策略性设计改性来提高其在空气和CO气氛中的氧渗透率。我们通过在B位引入Ni元素制备了Ni取代的LaPrNdBaSrCoFeNiO(LMN)HEPMs,并进一步创新性地引入A位缺陷来制备LaPrNdBaSrCoFeNiO(LMN)材料。在纯CO气氛中,LMN膜的氧渗透通量可达0.29 mL·cm·min。值得注意的是,在20%CO/80%He气氛下进行长达120 h的稳定性测试后,LMN膜仍保持良好的钙钛矿结构。这些发现表明,A位缺陷高熵钙钛矿在CO捕获、储存和利用方面具有巨大的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e7b/11434388/4b33eeb58dcd/materials-17-04672-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验