Suppr超能文献

水解反应和磨料拖曳力促进剂对提高硅片抛光速率及改善硅片表面粗糙度的影响

Effects of Hydrolysis Reaction and Abrasive Drag Force Accelerator on Enhancing Si-Wafer Polishing Rate and Improving Si-Wafer Surface Roughness.

作者信息

Jeon Min-Uk, Kim Pil-Su, Han Man-Hyup, Lee Se-Hui, Lee Hye-Min, Kim Su-Bin, Park Jin-Hyung, Cho Kyoo-Chul, Park Jinsub, Park Jea-Gun

机构信息

Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea.

Department of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 04763, Republic of Korea.

出版信息

Nanomaterials (Basel). 2025 Aug 14;15(16):1248. doi: 10.3390/nano15161248.

Abstract

To satisfy the superior surface quality requirements in the fabrication of HBM (High-Bandwidth Memory) and 3D NAND Flash Memory, high-efficiency Si chemical mechanical planarization (CMP) is essential. In this study, a colloidal silica abrasive-based Si-wafer CMP slurry was developed to simultaneously achieve a high polishing rate (≥10 nm/min) and low surface roughness (≤0.2 nm) without inducing CMP-induced scratches. The proposed Si-wafer CMP slurry incorporates two functional components: triammonium phosphate (TAP) as a hydrolysis reaction accelerator and hydroxyethyl cellulose (HEC) as an abrasive drag force accelerator. The polishing rate enhancement mechanism of TAP was analyzed by monitoring the OH mol concentration, surface adsorption behavior, and XPS spectra. The results showed that increasing the TAP concentration raised the OH mol concentration and converted Si-Si and Si-O-Si bonds to Si-OH via a hydrolysis reaction, thereby increasing the polishing rate. However, excessive hydrolysis also led to increased surface roughness. On the other hand, HEC influenced slurry viscosity, abrasive dispersibility, and drag force. At low HEC concentrations, increased abrasive drag force improved the polishing rate. At high concentrations, however, HEC formed a hindrance layer on the Si surface via hydrogen bonding and condensation reactions, reducing the effective contact area of abrasives and thus decreasing the polishing rate. By optimizing the concentrations of TAP (0.0037 wt%) and HEC (≤0.0024 wt%), the proposed slurry formulation achieved high-performance Si-wafer CMP, satisfying both surface roughness and polishing rate targets required for advanced memory packaging applications.

摘要

为满足高带宽内存(HBM)和3D NAND闪存制造中对卓越表面质量的要求,高效的硅化学机械抛光(CMP)至关重要。在本研究中,开发了一种基于胶体二氧化硅磨料的硅片CMP浆料,以在不产生CMP诱导划痕的情况下,同时实现高抛光速率(≥10 nm/分钟)和低表面粗糙度(≤0.2 nm)。所提出的硅片CMP浆料包含两种功能成分:作为水解反应促进剂的磷酸三铵(TAP)和作为磨料拖曳力促进剂的羟乙基纤维素(HEC)。通过监测OH摩尔浓度、表面吸附行为和XPS光谱,分析了TAP的抛光速率增强机制。结果表明,增加TAP浓度会提高OH摩尔浓度,并通过水解反应将Si-Si和Si-O-Si键转化为Si-OH,从而提高抛光速率。然而,过度水解也会导致表面粗糙度增加。另一方面,HEC影响浆料粘度、磨料分散性和拖曳力。在低HEC浓度下,增加的磨料拖曳力提高了抛光速率。然而,在高浓度下,HEC通过氢键和缩合反应在硅表面形成阻碍层,减少了磨料的有效接触面积,从而降低了抛光速率。通过优化TAP(0.0037 wt%)和HEC(≤0.0024 wt%)的浓度,所提出的浆料配方实现了高性能的硅片CMP,满足了先进内存封装应用所需的表面粗糙度和抛光速率目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cdd/12388451/4efa0f91e3eb/nanomaterials-15-01248-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验