Hu Qihong, Liu Runfeng, Shan Xinyu, Wang Xiaoyun, Yang Hong, Zhao Heping, Huang Yonggang
College of Physics and Electromechanical Engineering, Jishou University, Jishou 416000, China.
School of Information Technology and Management, Hunan University of Finance and Economics, Changsha 410205, China.
Nanomaterials (Basel). 2025 Aug 21;15(16):1288. doi: 10.3390/nano15161288.
Quantum hydrodynamic theory (QHT) provides a computationally efficient alternative to time-dependent density functional theory for simulating plasmonic nanostructures, but its predictive power depends critically on the choice of ground-state electron density and energy functional. To construct ground-state densities, we adopt orbital-free density functional theory and numerically evaluate the effect of different exchange-correlation functionals and kinetic energy functionals. A suitable energy functional to reproduce both the DFT-calculated work function and charge density is identified. In the excited-state part, we adopt this obital-free ground-state density and investigate how variations in the von Weizsäcker kinetic energy fraction within the Laplacian-level functional affect the resonance energy and oscillator strengths. The appropriate functional form is identified, achieving an accuracy comparable to that reported in previous studies. Applied to sodium nanodimers, our approach captures nonlinear density responses at sub-nanometer gaps. This work extends QHT beyond idealized geometries and offers a robust path toward efficient quantum plasmonic modeling.
量子流体动力学理论(QHT)为模拟等离子体纳米结构提供了一种计算效率高的替代时变密度泛函理论的方法,但其预测能力关键取决于基态电子密度和能量泛函的选择。为了构建基态密度,我们采用无轨道密度泛函理论,并数值评估不同交换关联泛函和动能泛函的效果。确定了一种合适的能量泛函,以再现密度泛函理论计算的功函数和电荷密度。在激发态部分,我们采用这种无轨道基态密度,并研究拉普拉斯水平泛函内冯·魏茨泽克动能分数的变化如何影响共振能量和振子强度。确定了合适的泛函形式,实现了与先前研究报告相当的精度。应用于钠纳米二聚体,我们的方法捕捉到了亚纳米间隙处的非线性密度响应。这项工作将QHT扩展到了理想化几何结构之外,并为高效量子等离子体建模提供了一条稳健的途径。