Suppr超能文献

在湍流谱中纳入长程相关性和分形特征。

Incorporating long-range dependence and fractal features in turbulence spectra.

作者信息

Cheng Shyuan, Jetti Yaswanth Sai, Neary Vincent S, Ostoja-Starzewski Martin, Chamorro Leonardo P

机构信息

Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL, USA.

Sandia National Laboratories, Albuquerque, New Mexico, USA.

出版信息

Sci Rep. 2025 Aug 27;15(1):31663. doi: 10.1038/s41598-025-16950-1.

Abstract

We introduce an advanced turbulence spectrum model developed from mathematical foundations from a covariance function class and empirically validated using extensive field data. This model captures the complex dynamics of long-range dependence, and fractal characteristics prevalent in riverine and atmospheric boundary layer (ABL) flows that are ignored by classical spectrum models, such as IEC (International Electrotechnical Commission) von Kármán and Kaimal model. The model delineates scaling behaviors across distinct frequency bands and offers substantial flexibility through five well-defined parameters each characterizing a distinct physical aspect of the velocity time series. A detailed procedure for obtaining each parameter from time series data is outlined. The comprehensive validations with field data from tidal currents and ABL flows substantiate the model's fidelity in accurately replicating observed phenomena. This validation establishes the reliability of the proposed model and, when incorporated into stochastic full-field simulators such as TurbSim, demonstrates its potential to advance the predictive modeling and analysis of turbulent flows in environmental science and engineering contexts.

摘要

我们介绍了一种先进的湍流谱模型,该模型基于协方差函数类的数学基础开发,并通过大量现场数据进行了实证验证。该模型捕捉了长程相关性的复杂动态,以及河流和大气边界层(ABL)流动中普遍存在的分形特征,而这些特征被经典谱模型(如国际电工委员会(IEC)的冯·卡门模型和凯马尔模型)所忽略。该模型描绘了不同频带的标度行为,并通过五个明确定义的参数提供了极大的灵活性,每个参数表征了速度时间序列的一个独特物理方面。概述了从时间序列数据中获取每个参数的详细过程。对潮流和ABL流动现场数据的全面验证证实了该模型在准确复制观测现象方面的保真度。这种验证确立了所提出模型的可靠性,并且当该模型被纳入诸如TurbSim之类的随机全场模拟器时,证明了其在推进环境科学和工程背景下湍流流动的预测建模和分析方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fda7/12391321/4dc833aac275/41598_2025_16950_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验